Skip to main content
Log in

Formation of catalytically active cross-species heterodimers of thymidylate synthase from Plasmodium falciparum and Plasmodium vivax

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Thymidylate synthase (TS) of Plasmodium dihydrofolate reductase-thymidylate synthase (DHFR-TS) functions as a homodimeric enzyme with two active sites located near the subunit interface. The dimerization is essential for catalysis, since the active site of each subunit contains amino acid residues contributed from the other TS domain. In P. falciparum DHFR-TS, it has been shown that the active sites require Cys-490 from one domain and Arg-470 donated from the other domain. Mutants of these two series can complement one another giving rise to active enzyme. Here, the potential to form cross-species heterodimers between P. falciparum and P. vivax TS has been explored. Formation of cross-species heterodimer was tested by co-transformation of TS-inactive Cys-490 mutants of P. falciparum or P. vivax with corresponding TS-inactive Arg-486 mutants of P. vivax or P. falciparum into thymidine-requiring Escherichia coli. Active heterodimers were detected by subunit complementation and 6-[3H]-FdUMP binding assays. All combinations of the mutants tested, except for (Pf)R470A+(Pv)C506Y, were able to form catalytically active cross-species heterodimers. The single active site formed by (Pf)R470D+(Pv)C506Y and (Pv)R486D+(Pf)C490A pairs of cross-species heterodimers has k cat and K m values similar to those of intra-species heterodimers of P. falciparum and P. vivax. This is the first report to demonstrate that the TS subunit interface between Plasmodium species is sufficiently conserved to allow formation of fully active cross-species heterodimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mendis K, Sina BJ, Marchesini P, Carter R (2001) The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64:97–106

    CAS  PubMed  Google Scholar 

  2. Sina B (2002) Focus on Plasmodium vivax. Trends Parasitol 18:287–289

    Article  PubMed  Google Scholar 

  3. Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM (2007) Vivax malaria: neglected and not benign. Am J Trop Med Hyg 77:79–87

    PubMed  Google Scholar 

  4. Yuthavong Y (2002) Basis for antifolate action and resistance in malaria. Microbes Infect 4:175–182

    Article  CAS  PubMed  Google Scholar 

  5. Hitching GH (1960) Pyrimethamine-use of an antimetabolite in the chemotherapy of malaria and other infections. Clin Pharmacol Ther 1:570–589

    Google Scholar 

  6. Olliaro PL, Yuthavong Y (1999) An overview of chemotherapeutic targets for antimalarial drug discovery. Pharmacol Ther 81:91–110

    Article  CAS  PubMed  Google Scholar 

  7. Macreadie I, Ginsburg H, Sirawaraporn W, Tilley L (2000) Antimalarial drug development and new targets. Parasitol Today 16:438–444

    Article  CAS  PubMed  Google Scholar 

  8. Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762

    Article  CAS  PubMed  Google Scholar 

  9. Tjitra E, Baker J, Suprianto S, Cheng Q, Anstey NM (2002) Therapeutic efficacies of artesunate–sulfadoxine–pyrimethamine and chloroquine–sulfadoxine–pyrimethamine in vivax malaria pilot studies: relationship to Plasmodium vivax dhfr mutations. Antimicrob Agents Chemother 46:3947–3953

    Article  CAS  PubMed  Google Scholar 

  10. Houghton PJ, Germain GS, Hazelton BJ, Pennington JW, Houghton JA (1989) Mutants of human colon adenocarcinoma, selected for thymidylate synthase deficiency. Proc Natl Acad Sci USA 86:1377–1381

    Article  CAS  PubMed  Google Scholar 

  11. Ingraham HA, Dickey L, Goulian M (1986) DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. Biochemistry 25:3225–3230

    Article  CAS  PubMed  Google Scholar 

  12. Yoshioka A, Tanaka S, Hiraoka O, Koyama Y, Hirota Y, Ayusawa D, Seno T, Garrett C, Wataya Y (1987) Deoxyribonucleoside triphosphate imbalance. 5-Fluorodeoxyuridine-induced DNA double strand breaks in mouse FM3A cells and the mechanism of cell death. J Biol Chem 262:8235–8241

    CAS  PubMed  Google Scholar 

  13. Rathod PK, Reshmi S (1994) Susceptibility of Plasmodium falciparum to a combination of thymidine and ICI D1694, a quinazoline antifolate directed at thymidylate synthase. Antimicrob Agents Chemother 38:476–480

    CAS  PubMed  Google Scholar 

  14. Hekmat-Nejad M, Rathod PK (1996) Kinetics of Plasmodium falciparum thymidylate synthase: interactions with high-affinity metabolites of 5-fluoroorotate and D1694. Antimicrob Agents Chemother 40:1628–1632

    CAS  PubMed  Google Scholar 

  15. Jiang L, Lee PC, White J, Rathod PK (2000) Potent and selective activity of a combination of thymidine and 1843U89, a folate-based thymidylate synthase inhibitor, against Plasmodium falciparum. Antimicrob Agents Chemother 44:1047–1050

    Article  CAS  PubMed  Google Scholar 

  16. Muregi FW, Kano S, Kino H, Ishih A (2009) Plasmodium berghei: efficacy of 5-fluoroorotate in combination with commonly used antimalarial drugs in a mouse model. Exp Parasitol 121:376–380

    Article  CAS  PubMed  Google Scholar 

  17. Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol 10:357–365

    Article  CAS  PubMed  Google Scholar 

  18. Hardy LW, Finer-Moore JS, Montfort WR, Jones MO, Santi DV, Stroud RM (1987) Atomic structure of thymidylate synthase: target for rational drug design. Science 235:448–455

    Article  CAS  PubMed  Google Scholar 

  19. Montfort WR, Perry KM, Fauman EB, Finer-Moore JS, Maley GF, Hardy L, Maley F, Stroud RM (1990) Structure, multiple site binding, and segmental accommodation in thymidylate synthase on binding dUMP and an anti-folate. Biochemistry 29:6964–6977

    Article  CAS  PubMed  Google Scholar 

  20. Schiffer CA, Clifton IJ, Davisson VJ, Santi DV, Stroud RM (1995) Crystal structure of human thymidylate synthase: a structural mechanism for guiding substrates into the active site. Biochemistry 34:16279–16287

    Article  CAS  PubMed  Google Scholar 

  21. Finer-Moore JS, Montfort WR, Stroud RM (1990) Pairwise specificity and sequential binding in enzyme catalysis: thymidylate synthase. Biochemistry 29:6977–6986

    Article  CAS  PubMed  Google Scholar 

  22. Perry KM, Fauman EB, Finer-Moore JS, Montfort WR, Maley GF, Maley F, Stroud RM (1990) Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins 8:315–333

    Article  CAS  PubMed  Google Scholar 

  23. Bawankar P, Shaw PJ, Sardana R, Babar PH, Patankar S (2010) 5′ and 3′ end modifications of spliceosomal RNAs in Plasmodium falciparum. Mol Biol Rep 37:2125–2133

    Article  CAS  PubMed  Google Scholar 

  24. Leartsakulpanich U, Imwong M, Pukrittayakamee S, White NJ, Snounou G, Sirawaraporn W, Yuthavong Y (2002) Molecular characterization of dihydrofolate reductase in relation to antifolate resistance in Plasmodium vivax. Mol Biochem Parasitol 119:63–73

    Article  CAS  PubMed  Google Scholar 

  25. McKie JH (1994) Homology modelling of the dihydrofolate reductase-thymidylate synthase bifunctional enzyme of Leishmania major, a potential target for rational drug design in leishmaniasis. Drug Des Discov 11:269–288

    CAS  PubMed  Google Scholar 

  26. Reche P, Arrebola R, Olmo A, Santi DV, Gonzalez-Pacanowska D, Ruiz-Perez LM (1994) Cloning and expression of the dihydrofolate reductase-thymidylate synthase gene from Trypanosoma cruzi. Mol Biochem Parasitol 65:247–258

    Article  CAS  PubMed  Google Scholar 

  27. Trujillo M, Donald RG, Roos DS, Greene PJ, Santi DV (1996) Heterologous expression and characterization of the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of Toxoplasma gondii. Biochemistry 35:6366–6374

    Article  CAS  PubMed  Google Scholar 

  28. O’Neil RH, Lilien RH, Donald BR, Stroud RM, Anderson AC (2003) The crystal structure of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveals a novel architecture for the bifunctional enzyme. J Eukaryot Microbiol 50(Suppl):555–556

    Article  PubMed  Google Scholar 

  29. Sirawaraporn W, Prapunwattana P, Sirawaraporn R, Yuthavong Y, Santi DV (1993) The dihydrofolate reductase domain of Plasmodium falciparum thymidylate synthase-dihydrofolate reductase. Gene synthesis, expression, and anti-folate-resistant mutants. J Biol Chem 268:21637–21644

    CAS  PubMed  Google Scholar 

  30. Shallom S, Zhang K, Jiang L, Rathod PK (1999) Essential protein–protein interactions between Plasmodium falciparum thymidylate synthase and dihydrofolate reductase domains. J Biol Chem 274:37781–37786

    Article  CAS  PubMed  Google Scholar 

  31. Wattanarangsan J, Chusacultanachai S, Yuvaniyama J, Kamchonwongpaisan S, Yuthavong Y (2003) Effect of N-terminal truncation of Plasmodium falciparum dihydrofolate reductase on dihydrofolate reductase and thymidylate synthase activity. Mol Biochem Parasitol 126:97–102

    Article  CAS  PubMed  Google Scholar 

  32. Pookanjanatavip M, Yuthavong Y, Greene PJ, Santi DV (1992) Subunit complementation of thymidylate synthase. Biochemistry 31:10303–10309

    Article  CAS  PubMed  Google Scholar 

  33. Chanama M, Chitnumsub P, Yuthavong Y (2005) Subunit complementation of thymidylate synthase in Plasmodium falciparum bifunctional dihydrofolate reductase-thymidylate synthase. Mol Biochem Parasitol 139:83–90

    Article  CAS  PubMed  Google Scholar 

  34. Chitnumsub P, Yuvaniyama J, Vanichtanankul J, Kamchonwongpaisan S, Walkinshaw MD, Yuthavong Y (2004) Characterization, crystallization and preliminary X-ray analysis of bifunctional dihydrofolate reductase-thymidylate synthase from Plasmodium falciparum. Acta Crystallogr D 60:780–783

    Article  PubMed  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Meek TD, Garvey EP, Santi DV (1985) Purification and characterization of the bifunctional thymidylate synthetase-dihydrofolate reductase from methotrexate-resistant Leishmania tropica. Biochemistry 24:678–686

    Article  CAS  PubMed  Google Scholar 

  37. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley-Interscience, New York

    Google Scholar 

  38. Santi DV, McHenry CS (1972) 5-Fluoro-2′-deoxyuridylate: covalent complex with thymidylate synthetase. Proc Natl Acad Sci USA 69:1855–1857

    Article  CAS  PubMed  Google Scholar 

  39. Matthews DA, Appelt K, Oatley SJ (1989) Stacked beta-bulges in thymidylate synthase account for a novel right-handed rotation between opposing beta-sheets. J Mol Biol 205:449–454

    Article  CAS  PubMed  Google Scholar 

  40. Dasgupta T, Anderson KS (2008) Probing the role of parasite-specific, distant structural regions on communication and catalysis in the bifunctional thymidylate synthase-dihydrofolate reductase from Plasmodium falciparum. Biochemistry 47:1336–1345

    Article  CAS  PubMed  Google Scholar 

  41. O’Neil RH, Lilien RH, Donald BR, Stroud RM, Anderson AC (2003) Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase. J Biol Chem 278:52980–52987

    Article  PubMed  Google Scholar 

  42. Senkovich O, Schormann N, Chattopadhyay D (2009) Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. Acta Crystallogr D 65:704–716

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Center for Genetic Engineering and Biotechnology Grant (BT-B-01-MG-14-4913). This study was partially supported for publication by the China Medical Board (CMB), Faculty of Public Health, Mahidol University, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manee Chanama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanama, M., Chanama, S., Shaw, P.J. et al. Formation of catalytically active cross-species heterodimers of thymidylate synthase from Plasmodium falciparum and Plasmodium vivax . Mol Biol Rep 38, 1029–1037 (2011). https://doi.org/10.1007/s11033-010-0199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0199-7

Keywords

Navigation