Skip to main content

Advertisement

Log in

Immunohistochemical distribution of the tetraspanin CD9 in normal porcine tissues

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The tetra-membrane-spanning protein, CD9 is a 24–27 kDa cell surface glycoprotein expressed in a wide variety of human cells being involved in a variety of cell processes, including signaling, adhesion, motility, fertilization and tumor cells metastasis. By means of a polyclonal antibody (N1) raised against recombinant swine CD9 protein, we studied the immunohistochemical expression of CD9 on different normal swine tissues. Immunochemistry shows that swine CD9 was distribute in a similar form than in human tissues, being present on epithelial cells of lung, liver, kidney, skin, tonsil, testis (epididymo), gut mucosa, uterus and mama. Furthermore, polyclonal antibody against swine CD9 reacts with white matter from cerebrum and cerebellum, peripheral nerves fibers and Hassal corpuscle from thymus and ovum. Platelets react strongly with our antibody, but monocytes and neutrophils react lightly. These results suggest that CD9 antigen should play a similar functional role in swine and human and therefore studies on CD9 on swine as an animal model would allow new knowledge about its role in adhesion, fertilization and tumor metastasis among other important biomedical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DIG:

Digoxigenin

DMSO:

Dimethylsulphoxide

EGFR:

Epidermal growth factor receptor

MT1-MMP:

Membrane type-1 matrix metalloproteinase

PBL:

Peripheral blood lymphocyte

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate buffered saline

PRP:

Porcine platelet-rich plasma

SDS:

Sodium dodecylsulfate

TGF:

Transforming growth factor

References

  1. Lanza F, Wolf D, Fox CF et al (1991) cDNA cloning and expression of platelet p25/CD29. J Biol Chem 266:10638–10645

    CAS  PubMed  Google Scholar 

  2. Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Develop Biol 19:397–422

    Article  CAS  Google Scholar 

  3. Maecker HT, Todd SC, Levy S (1997) Tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    CAS  PubMed  Google Scholar 

  4. Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151

    CAS  PubMed  Google Scholar 

  5. Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205

    Article  CAS  PubMed  Google Scholar 

  6. Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155:1103–1107

    Article  CAS  PubMed  Google Scholar 

  7. Kersey JH, Lebein T, Abramson CS et al (1981) p24 a human leukemia associated and lymphohemopoietic progenitor cell surface structure identified with monoclonal antibody Ba2. J Exp Med 153:726–731

    Article  CAS  PubMed  Google Scholar 

  8. Boucheix C, Benoit P (1988) CD9 antigen: will platelet physiology help to explain the function of a surface molecule during hemopoietic differentiation. Nouv Rev Fr Hematol 30:201–202

    CAS  PubMed  Google Scholar 

  9. Nakamura Y, Iwamoto R, Mekada E (1996) Expression and distribution of CD9 in myelin of the central and peripheral nervous systems. Am J Pathol 149:575–583

    CAS  PubMed  Google Scholar 

  10. Ash RC, Jansen J, Kersey JH, LeBien TW, Zanjani ED (1982) Normal human pluripotential and committed hematopoietic progenitors do not express the p24 antigen detected by monoclonal antibody BA-2: implications for immunotherapy of lymphocytic leukemia. Blood 60:1310

    CAS  PubMed  Google Scholar 

  11. Heinz M, Huang CA, Emery DW, Giovino MA, LeGuern A, Kurilla-Mahon B, Theodore P, Arn JS, Sykes M, Mulligan R, Down JD, Sachs DH, Goodell MA (2002) Use of CD9 expression to enrich for porcine hematopoietic progenitors. Exp Hematol 30(7):809–815

    Article  CAS  PubMed  Google Scholar 

  12. García-López MA, Barreiro O, García-Díez A, Sánchez-Madrid F, Penas PF (2005) Role of tetraspanins CD29 and CD151 in primary melanocyte motility. J Invest Dermatol 125:1001–1009

    Article  PubMed  Google Scholar 

  13. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    Article  CAS  PubMed  Google Scholar 

  14. Longhurts CM, Jacobs JD, White MM et al (2002) Chinese hamster ovary cell motility to fibronectin is modulated by the second extracellular loop of CD9: identification of a putative fibronectin binding site. J Biol Chem 277:32445–32552

    Article  Google Scholar 

  15. Jennings LK, Fox CF, Kouns WC et al (1990) The activation of human platelets mediated by anti-human platelet p24/CD9 monoclonal antibodies. J Biol Chem 265(7):3815–3822

    CAS  PubMed  Google Scholar 

  16. Rubinstein F, Le Nanour F, Billar M, Prenant M, Boucheix C (1994) CD9 antigen is an accessory subunit of the VLA integrin complexes. Eur J Immunol 24:3005–3013

    Article  CAS  PubMed  Google Scholar 

  17. Kotha J, Longhurst C, Appling W, Jennings LK (2008) Tetraspanin CD9 regulates b1 integrin activation and enhances motility to fibronectin via a PI-3 kinase-dependent pathway. Exp Cell Res 314:1811–1822

    Article  CAS  PubMed  Google Scholar 

  18. Cook GA, Longhurst CM, Grgurevich S, Crossno JT, Jennings LK (2002) Identification of CD9 extracellular domains important in regulation of CHO cell adhesion to fibronectin and fibronectin pericellular matrix assembly. Blood 100(13):4502–4511

    Article  CAS  PubMed  Google Scholar 

  19. Lafleur MA, Xu D, Helmer ME (2009) Tetraspanin protein regulates membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 20:2030–2040

    Article  CAS  PubMed  Google Scholar 

  20. Stipp CS, Kolesnikova TV, Helmer ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28:106–112

    Article  CAS  PubMed  Google Scholar 

  21. Cajot JF, Sordat I, Sylvester T, Sordat B (1997) Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon cancer cells. Cancer Res 57:2593–2597

    CAS  PubMed  Google Scholar 

  22. Sauer G, Windisch J, Kurzeder C, Heilmann V, Kreinberg R, Deisller H (2003) Progression of cervical carcinoma is associated with down-regulation of CD9 but strong local re-expression at sites of transendothelial invasion. Clin Cancer Res 9:6426–6431

    CAS  PubMed  Google Scholar 

  23. Hori H, Yano S, Koufuji K, Takeda J, Shirouzu K (2004) CD9 expression in gastric cancer and its significance. J Surg Res 117:208–215

    Article  CAS  PubMed  Google Scholar 

  24. Takeda T, Hattori N, Tokuhara T, Nishimura Y, Yokoyama M, Miyake M (2007) Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res 67:1744–1749

    Article  CAS  PubMed  Google Scholar 

  25. Miyake M, Nakano K, Itoi SI, Koh T, Taki T (1996) Motility related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res 56:1244–1249

    CAS  PubMed  Google Scholar 

  26. Sakamoto K, Nakamura Y, Nakashima (2004) Immunohistochemical distribution of CD9 in parotid gland tumors. Auris Nasus Larynx 31(1):49–55

    Article  PubMed  Google Scholar 

  27. Murayama Y, Shinomura Y, Oritani K et al (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216(1):135–143

    Article  CAS  PubMed  Google Scholar 

  28. Imhoff I, Gasper WJ, Derynk R (2008) Association of tetraspanin CD9 with transmembrane TGFa and cytoskeletal organization. J Cell Sci 121:2265–2274

    Article  Google Scholar 

  29. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of CD9-deficient mice. Nat Genet 24:279–282

    Article  CAS  PubMed  Google Scholar 

  30. Chen MS, Tung KSK, Coonrod SA, Takahashi Y, Bigler D, Chang A, Tamashita Y, Kincade PW, Herr JC, White JM (1999) Role of the integrin associated protein CD9 in binding between sperm ADAM 2 and the egg integrin a6b1: implications for murine fertilization. Proc Natl Acad Sci USA 96:11830–11835

    Article  CAS  PubMed  Google Scholar 

  31. Takhashi Y, Bigler D, Ito Y, White JM (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of the b1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12:809–820

    Google Scholar 

  32. Wong GE, Zhu X, Prater CE, Oh E, Evans JP (2001) Analysis of fertilin (ADAM 1)-mediated sperm–egg cell adhesion during fertilization and identification of an adhesion-mediating sequence in the disintegrin-like domain. J Biol Chem 276:24937–24945

    Article  CAS  PubMed  Google Scholar 

  33. Zhu X, Evans JP (2002) Analysis of the roles of RGD-binding integrins, a4/a9 integrins, α6 integrins, and CD9 in the interaction of the fertilin b (ADAM) disintegrin domain with the mouse egg membrane. Biol Reprod 66:1193–1202

    Article  CAS  PubMed  Google Scholar 

  34. Li Y-H, Hou Yi, Ma Wei, Yuan Jin-Xiang, Zhang Dong, Sun Qing-Yuan, Wang Wei-Hua (2004) Localization of CD9 in pig oocytes and its effects on sperm–egg interaction. Reproduction 127:151–157

    Article  CAS  PubMed  Google Scholar 

  35. Willett BJ, Hosie MJ, Jarrett O, Neil JC (1994) Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9. Immunology 81:228–233

    CAS  PubMed  Google Scholar 

  36. Hosie M, Willeft BJ, Dunsford TH, Jarrett O, Neil JC (1993) A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor. J Virol 1667–1671

  37. Yubero N, Jiménez-Marín A, Yerle M, Morera L, Barbancho M, Llanes D, Garrido JJ (2003) Molecular cloning, expression pattern and chromosomal mapping of pig CD9 antigen. Cytogenet Genome Res 101:143–146

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka H, Kobayashi E (2006) Education and research using experimental pigs in a medical school. J Artif Organs 9:136–143

    Article  PubMed  Google Scholar 

  39. Serebruany VL, Ordonez JV, Yurovsky VV, Gurbel PA (1998) The crossreactivity of human vs swine platelet surface antigens: similarity of glycoproteins Ib and IIIa, but not IIb/IIIa complex. J Thromb Thrombolysis 5:37–41

    Article  CAS  PubMed  Google Scholar 

  40. Sincock PM, Mayrhofer G, Asham LK (1997) Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, Cd63 and α5β1 integrin. J Histochem Cytochem 45:515–525

    CAS  PubMed  Google Scholar 

  41. Nakamura Y, Handa K, Iwamoto R, Tsukamoto T, Takahasi M, Mekada E (2001) Immunohistochemical distribution of CD9, heparin binding epidermal growth factor-like growth factor, and integrin α3β1 in normal human tissues. J Histochem Cytochem 49(4):439–444

    CAS  PubMed  Google Scholar 

  42. Jones NH, Borowitz MJ, Metzgar RS (1982) Characterization and distribution of a 24, 000-molecular weight antigen defined by a monoclonal antibody (DU-ALL-1) elicited to common acute lymphoblastic leukaemia (cALL) cells. Leuk Res 4:449–464

    Article  Google Scholar 

  43. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    Article  CAS  PubMed  Google Scholar 

  44. Rossler K, Neuchrist C, Kitz K, Scheiner O, Kraft D, Lassman H (1992) Expression of leukocyte adhesion molecules at the human blood brain barrier (BBB). J Neurosci 31:365–374

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been founded by the National R&D Program Grant of the Spanish Ministry of Education and Science (AGL2002-00529 and AGL2005-01561). Noemi Yubero was a postgraduate scholar of the Spanish Research Programme. Juan J. Garrido was a recipient of a “Ramón y Cajal” Grant of the Spanish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan J. Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yubero, N., Jiménez-Marín, Á., Lucena, C. et al. Immunohistochemical distribution of the tetraspanin CD9 in normal porcine tissues. Mol Biol Rep 38, 1021–1028 (2011). https://doi.org/10.1007/s11033-010-0198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0198-8

Keywords

Navigation