Skip to main content
Log in

The protective effects and potential mechanism of Calpain inhibitor Calpeptin against focal cerebral ischemia–reperfusion injury in rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To demonstrate the protective effects of Calpeptin as the Calpain inhibitor against focal cerebral ischemia–reperfusion injury in rats and to explore it’s possible mechanism. 96 rats were randomly divided into four groups. The model of middle cerebral artery occlusion was used for the research of focal cerebral ischemia. Using this animal model, the effects of Calpeptin on the neurological functions, infarction volume and infarction volume percentage of brain, Caspase-3 expression and neuronal apoptosis in hippocampal CA1 sector after focal cerebral ischemia–reperfusion injury in rats were investigated. The current results confirmed that Calpeptin as the Calpain inhibitor might paly an important role for neuroprotection against focal cerebral ischemia–reperfusion injury. Calpeptin could reduce the neuronal apoptosis in hippocampal CA1 sector when the rats was subjected to the focal cerebral ischemia–reperfusion, the potential mechanism might be related to the inhibition of the expression of Caspase-3 by Calpeptin. However, it is still unknown to what the exact mechanism of Calpeptin inhibits the activation of Caspase-3 in this process. Therefore, further research needs to be done to unravel the underlying mechanisms in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Juurlink BH, Sweeney MI (1997) Mechanisms that result in damage during and following cerebral ischemia. Neurosci Biobehav Rev 21:121–128

    Article  CAS  PubMed  Google Scholar 

  2. Fang NX, Yao YT, Shi CX, Li LH (2010) Attenuation of ischemia-reperfusion injury by sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts. Mol Biol Rep. 2010 Mar 10. [Epub ahead of print] PubMed PMID: 20217242

  3. Miao Y, Qiu Y, Lin Y, Miao Z, Zhang J, Lu X (2010) Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism. Mol Biol Rep. 2010 Feb 24. [Epub ahead of print] PubMed PMID:20182801

  4. Yang J, Zhang XD, Yang J, Ding JW, Liu ZQ, Li SG, Yang R (2010) The cardioprotective effect of fluvastatin on ischemic injury via down-regulation of toll-like receptor 4. Mol Biol Rep. 2010 Feb 4. [Epub ahead of print] PubMed PMID:20127518

  5. Yao YT, Li LH, Chen L, Wang WP, Li LB, Gao CQ (2009) Sevoflurane postconditioning protects isolated rat hearts against ischemia-reperfusion injury: the role of radical oxygen species, extracellular signal-related kinases 1/2 and mitochondrial permeability transition pore. Mol Biol Rep. 2009 Aug 20. [Epub ahead of print] PubMed PMID: 19693689

  6. Yilmaz E, Akar R, Eker ST, Deda G, Adiguzel Y, Akar N (2010) Relationship between functional promoter polymorphism in the XBP1 gene (-116C/G) and atherosclerosis, ischemic stroke and hyperhomocysteinemia. Mol Biol Rep. 2010 Jan;37(1):269–272. Epub 2009 Aug 11. PubMed PMID: 19669932

    Google Scholar 

  7. Hou X, Wu X, Ma J, Lv X, Jin X (2010) Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep. 2010 Mar;37(3):1467–1475. Epub 2009 May 12. PubMed PMID: 19434514

    Google Scholar 

  8. Wan J, Xiong C, Zheng F, Zhou X, Huang C, Jiang H (2008) Study of Kir6.2/KCNJ11 gene in a sudden cardiac death pedigree. Mol Biol Rep. 2008 Jun;35(2):119–123. Epub 2007 Mar 13. PubMed PMID: 17431820

    Google Scholar 

  9. Bartus RT, Dean RL, Mennerick S et al (1998) Temporal ordering of Pathogenic events following transient global ischemia. Brain Res 790:1–13

    Article  CAS  PubMed  Google Scholar 

  10. Yamakawa H, Banno Y, Nakashima S et al (2001) Crucial role of calpain in hypoxic PC12 cell death: calpain, but not caspases, mediates degradation of cytoskeletal proteins and protein kinase C-alpha and -delta. Neurol Res 23:522–530

    Article  CAS  PubMed  Google Scholar 

  11. Wu H-Y, Yuen EY, Lu Y-F et al (2005) Regulation of N-Methyl-D-aspartate receptors by calpain in cortical neurons. J Biol Chem 280:21588–21593

    Article  CAS  PubMed  Google Scholar 

  12. Junoy B, Maccario H, Mas JL et al (2002) Proteasome implication in phorbol ester- and GnRH-induced selective down-regulation of PKC (alpha, epsilon, zeta) in alpha T(3)-1 and L beta T(2) gonadotrope cell lines. Endocrinology 143:1386–1403

    Article  CAS  PubMed  Google Scholar 

  13. Yamashima T, Tonchev AB, Tsukada T, et al (2003) Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. HIPPOCAMPUS 13:791–800

    Google Scholar 

  14. Tamura H, Ohtsuru A, Kamohara Y, Fujioka H et al (2003) Bax cleavage implicates caspase-dependent H2O2-induced apoptosis of hepatocytes. Int J Mol Med 11:369–374

    CAS  PubMed  Google Scholar 

  15. Takaoka M, Itoh M, Kohyama S et al (2000) Proteasome inhibition attenuates renal endothelin-1 production and the development of ischemic acute renal failure in rats. J Cardiovasc Pharmacol 36:S225–S227

    CAS  PubMed  Google Scholar 

  16. Feng J, Schaus BJ, Fallavollita JA et al (2001) Preload induces troponin I degradation independently of myocardial ischemia. Circulation 103:2035–2037

    CAS  PubMed  Google Scholar 

  17. Das A, Sribnick EA, Wingrave JM et al (2005) Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection. J Neurosci Res 81:551–562

    Article  CAS  PubMed  Google Scholar 

  18. Zea Longa E, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Google Scholar 

  19. Belayev L, Alonso OF, Busto R et al (1996) Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathological evaluation of an improved model. Stroke 27:1616–1623

    CAS  PubMed  Google Scholar 

  20. Bederson JB, Pitts LH, Tsuj M et al (1986) Rat middle cerebral artery occlusion evaluation of the model and development of a neurologic evaluation. Stroke 17:472–476

    CAS  PubMed  Google Scholar 

  21. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischemic brain injury mechanism. Nature 399:A7–A14

    CAS  PubMed  Google Scholar 

  22. Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J et al (1998) Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on “calpain-cathepsin hypothesis”. Eur J Neurosci 10:1723–1733

    Article  CAS  PubMed  Google Scholar 

  23. Markgraf CG, Velayo NL, Johnson MP et al (1998) Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29:152–158

    CAS  PubMed  Google Scholar 

  24. Higuchi M, Tomioka M, Takano J et al (2005) Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice over expressing their specific inhibitors. J Biol Chem 280:15229–15237

    Article  CAS  PubMed  Google Scholar 

  25. Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL et al (2001) Synergisti activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”. J Biol Chem 276:10191–10198

    Article  CAS  PubMed  Google Scholar 

  26. Rami A, Agarwal R, Botez G et al (2000) mu-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866:299–312

    Article  CAS  PubMed  Google Scholar 

  27. Gao G, Dou QP (2000) N-terminal cleavage of bax by calpain generates apotent proapoptotic 18-kDa fragment that promotea bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80:53–72

    Article  CAS  PubMed  Google Scholar 

  28. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Komimani E, Uchiyama Y (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15:1001–1011

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Medical Science Research Foundation of Jiangsu Province, China (Grant No. H200645) and Science Foundation of the Health Bureau of Wuxi City, China (Grant No. XM0805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongshen Kuang or Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Kuang, Z., Zhang, Y. et al. The protective effects and potential mechanism of Calpain inhibitor Calpeptin against focal cerebral ischemia–reperfusion injury in rats. Mol Biol Rep 38, 905–912 (2011). https://doi.org/10.1007/s11033-010-0183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0183-2

Keywords

Navigation