Skip to main content
Log in

Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Maruca vitrata Fabricius is a pantropical lepidopteran pest of legumes. Phylogenetic analysis of a mitochondrial cytochrome c oxidase-I gene (cox1) fragment indicates that three Maruca sp. mitochondrial lineages have unique geographic distributions [lineages 1 and 2: Australia, Taiwan, and West Africa (Niger, Nigeria, and Burkina Faso), and lineage 3: Puerto Rico]. The haplotype (T30, T114) is specific to lineages 1&2 and was assayed by NsiI and SacI polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) within population samples; it was not observed in the Puerto Rican samples, but was nearly fixed among samples from West Africa, Australia and Taiwan (85.5–100%). Re-sequencing and phylogenetic analyses of PCR-RFLP defined cox1 haplotypes indicate that nucleotide diversity is highest among samples from West Africa. Phylogenetic reconstruction based upon ribosomal DNA (rDNA) internal transcribed spacer-2 (ITS-2) sequences provided additional evidence for three Maruca sp. clades. These data suggest that multiple unique Maruca species or subspecies are present worldwide, which has implications for the management of this pest species-complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. CAB International (2005) Crop protection compendium, 2005 edition. CAB International, Wallingford. www.cabicompendium.org/cpc (selected texts for Maruca vitrata). http://www.runetwork.de/html/fr/articles/document.html?Action=displayDocument&id=8752

  2. Taylor TA (1967) The bionomics of Maruca testululis Gey. (Lepidoptera: Pyralidae), a major pest of cowpeas in Nigeria. J W Afr Sci Assoc 12:111–129

    Google Scholar 

  3. Raheja AI (1974) Report on the insect pests of grain legumes in northern Nigeria. In: 1st IITA grain legume improvement workshop, 1973. International Institute of Tropical Agriculture, Ibadan, Nigeria, pp 295–299

  4. Katayama J, Suzuki I (1984) Seasonal prevalence of pod borers [Ostrinia scapulalis, Maruca testulalis and Matsumuraeses sp.] in azuki-beans and injury caused by larval infestation. Bull Kyoto Prefect Inst Agric 12:27–34

    Google Scholar 

  5. Ke LD, Fang JL, Li ZJ (1985) Bionomics and control of the legume pod-borer Maruca testulalis Geyer. Acta Entomol Sin 28(1):51–59

    Google Scholar 

  6. Sharma HC (1998) Bionomics, host plant resistance, and management of the legume pod borer, Maruca vitrata—a review. Crop Prot 17:373–386

    Article  Google Scholar 

  7. Wolcott GN (1933) The lima bean pod borer caterpillars of Puerto Rico. J Dept Agric P R 17:241–255

    Google Scholar 

  8. Munroe EG (1995) Pyraustinae. In: Heppner JB (ed) Atlas of neotropical Lepidoptera. Checklist: part 2 Hyblaeoidea, Pyraloidea, Tortricoidea. Association for Tropical Lepidoptera, Scientific Publishers, Gainesville

  9. Arodokoun DY, Tamò M, Cloutier C, Adeoti R (2003) The importance of alternative host plants for the annual cycle of the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Pyralidae). Insect Sci Appl 23:103–113

    Google Scholar 

  10. Rathore YS, Lal SS (1998) Phylogenetic relationship of host plants of Maruca vitrata. Indian J Pulse Res 11(2):152–155

    Google Scholar 

  11. Singh SR, van Emden HF (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278

    Article  Google Scholar 

  12. Sharma HC, Saxena KB, Bhagwat VR (1999) The legume pod borer, Maruca vitrata: bionomics and management. Information bulletin 55. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India

  13. Arodokoun DY, Tamo M, Cloutier C, Brodeur J (2006) Larval parasitoids occurring on Maruca vitrata Fabricius (Lepidoptera: Pyralidae) in Benin, West Africa. Agric Ecosyst Environ 113:320–325

    Article  Google Scholar 

  14. Chinh NT, Dzung DT, Long TD, Tam HM, Ramakrishna A, Johansen C (2000) Legumes in Viet Nam: constraints and opportunities, pp 111–125. In: Gowda CLL, Ramakrishna A, Rupela OP, Wani SP (eds) Legumes in rice-based cropping systems in tropical Asia: constraints and opportunities. ICRISAT, India, 142 pp

  15. Soeun M (2001) Legumes in rice-based cropping systems in Cambodia: constraints and opportunities, pp 4–10. In: Gowda CLL, Ramakrishna A, Rupela OP, Wani SP (eds) Legumes in rice-based cropping systems in tropical Asia: constraints and opportunities. ICRISAT, India, 142 pp

  16. Ulrichs C, Mewis I, Schnitzler WH, Burleigh JR (2001) Parasitoids of the bean podborer, Maruca vitrata F. (Lepidoptera: Pyraustinae), a pest of Vigna sesquipedalis in the Philippine lowlands. Mitteilungen der Deutschen Gesellschaft fur allgemeine und angewandte Entomologie 13(1–6):283–288

    Google Scholar 

  17. Bindra OS (1968) A note on the study of varietal resistance in pulses to different insect pests. In: Second annual workshop on pulse crops. Indian Agricultural Research Institute, New Delhi

  18. Patnaik HP, Samolo AP, Samolo BN (1986) Susceptibility of some early varieties of pigeonpea for pod borers under protected conditions. Legum Res 9:7–10

    Google Scholar 

  19. Rahman MM (1989) Pest complex of flower and pods of pigeonpea and their control through insecticide application. Bang J Sci Res 7(1):27–32

    Google Scholar 

  20. Saxena KB (2000) Pigeonpea. In: Gupta SK (ed) Plant breeding: theory and techniques. Agrobios, Jodhpur, pp 82–112

    Google Scholar 

  21. Ekesi S (1999) Insecticide resistance in field populations of the legume pod borer Maruca vitrata Fabricius in Nigeria. Int J Pest Manag 45:57–59

    Article  CAS  Google Scholar 

  22. Ulrichs C, Mewis I, Schnitzler WH, Burleigh JR (2001) Effectivity of synthetic insecticides against Maruca vitrata F and the parasitoid Bassus asper Chou & Sharkey in the Philippines. Mitteilungen der Deutschen Gesellschaft fur allgemeine und angewandte Entomologie 13(1–6):279–282

    Google Scholar 

  23. Kym A (2006) Trangenic crops, EU precaution, and developing countries. Int J Technol Glob 2:65–80

    Google Scholar 

  24. Oparaeke AM (2006) The potential for controlling Maruca vitrata Fab. and Clavigralla tomentosicollis Stal. using different concentrations and spraying schedules of Syzigium aromaticum (L.) Merr and Perr on cowpea plants. J Plant Sci 1:132–137

    Article  Google Scholar 

  25. Chen S, Ravallion M (2004) How have the world’s poorest fared since the early 1980s? World Bank Res Obs 19:141–169

    Article  Google Scholar 

  26. Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300(5620):758–762

    Article  CAS  PubMed  Google Scholar 

  27. Brader L (1982) Recent trends of insect control in the tropics. Entomol Exp Appl 31:111–120

    Google Scholar 

  28. Saxena KB, Chandrasena GDSN, Hettiarachchi K, Iqbal YB, Fonseka HHD, Jayasekera SJBA (2002) Evaluation of pigeonpea accessions and selected lines for reaction to Maruca. Crop Sci 42(2):615–618

    Article  Google Scholar 

  29. Adekola OF, Oluleye F (2008) Induced tolerance of cowpea mutants to Maruca vitrata (Fabricius) (Lepidoptera : Pyralidae). Afr J Biotechnol 7(7):878–883

    Google Scholar 

  30. Srinivasan R (2008) Susceptibility of legume pod borer (LPB), Maruca vitrata to delta-endotoxins of Bacillus thuringiensis (Bt) in Taiwan. J Invertebr Pathol 97(1):79–81

    Article  CAS  PubMed  Google Scholar 

  31. Murdock LL, Coulibaly O, Higgins TJV, Huesing JE, Ishiyaku MF, Sithole-Niang I (2008) Cowpea: legume grains and forages. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants. Blackwell Publishing, Oxford, pp 23–56

    Google Scholar 

  32. Ba NM, Margam VM, Binso-Dabire CL, Sanon A, McNeil J, Murdock LL, Pittendrigh BR (2009) Seasonal and regional distribution of the cowpea pod borer, Maruca vitrata (Lepidoptera: Crambidae), in Burkina Faso. Int J Trop Insect Sci 29:1–6

    Article  Google Scholar 

  33. Bottenberg H, Tamò M, Arodokoun D, Jackai LEN, Singh BB, Youm O (1997) Population dynamics and migration of cowpea pests in northern Nigeria: implications for integrated pest management. In: Singh BB, Mohan-Raj DR, Dashiell KE, Jackai LEN (eds) Advances in cowpea research. International Institute of Tropical Agriculture and Japan International Center for Agricultural Sciences, Ibadan, pp 271–284

    Google Scholar 

  34. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  CAS  PubMed  Google Scholar 

  35. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270:S96–S99

    Article  CAS  PubMed  Google Scholar 

  36. Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 103:3657–3662

    Article  CAS  PubMed  Google Scholar 

  37. Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc Natl Acad Sci USA 104:4967–4972

    Article  CAS  PubMed  Google Scholar 

  38. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  40. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  41. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed  Google Scholar 

  42. Kumar S, Gadagkar SR (2001) Disparity Index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 158:1321–1327

    CAS  PubMed  Google Scholar 

  43. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  44. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  45. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi K, Nei M (2000) Efficiencies of fast algorithms of phylogenetic Inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258

    CAS  PubMed  Google Scholar 

  47. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  48. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  49. Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system. Mol Ecol Notes 7:355–364. www.barcodinglife.org

    Google Scholar 

  50. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  51. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JS, White TJ (eds) PCR protocol: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  52. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  53. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  Google Scholar 

  54. Dwivedi B, Gadagkar SR (2009) The impact of sequence parameter values on phylogenetic accuracy. Biol Med 1:50–62

    CAS  Google Scholar 

  55. Kim CG, Hoshizaki S, Huang YP, Tatsuki S (1999) Usefulness of mitochondrial COII gene sequences in examining phylogenetic relationships in the Asian corn borer, Ostrinia furnacalis, and allied species (Lepidoptera: Pyralidae). Appl Entomol Zool 34:405–412

    CAS  Google Scholar 

  56. Ohno S, Ishikawa Y, Tatsuki S, Hoshizaki S (2006) Variation in mitochondrial COII gene sequences among two species of Japanese knotweed-boring moths, Ostrinia latipennis and O. ovalipennis (Lepidoptera: Crambidae). Bull Entomol Res 96:243–249

    Article  CAS  PubMed  Google Scholar 

  57. Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnacalis. Int J Biol Sci 1:13–18

    CAS  PubMed  Google Scholar 

  58. Hoshizaki S, Washimori R, Kubota S, Ohno S, Huang Y, Tatsuki S, Ishikawa Y (2008) Two mitochondrial lineages occur in the Asian corn borer, Ostrinia furnacalis (Lepidoptera:Crambidae), in Japan. Bull Entomol Res 98:519–526

    Article  CAS  PubMed  Google Scholar 

  59. Coates BS, Sumerford DV, Hellmich RL (2004) Geographic and voltinism differentiation among North American Ostrinia nubilalis (European corn borer) mitochondrial cytochrome c oxidase hapoltypes. J Insect Sci 4:35–43

    PubMed  Google Scholar 

  60. Brower AVZ (2006) Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Syst Biodivers 4:127–132

    Article  Google Scholar 

  61. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 54:844–851

    Article  PubMed  Google Scholar 

  62. Vignal A, Milan D, San Cristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305

    Article  CAS  PubMed  Google Scholar 

  63. Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2008) Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs). Insect Mol Biol 17:607–620

    Article  CAS  PubMed  Google Scholar 

  64. Coates BS, Sumerford DV, Miller NJ, Kim KS, Sappington TW, Siegfried BD et al (2009) Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564

    Article  CAS  PubMed  Google Scholar 

  65. Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inference of population history. Trends Ecol Evol 18:249–256

    Article  Google Scholar 

  66. Väli U, Einarsson A, Waits L, Ellegren H (2008) To what extent do microsatellite markers reflect genome-wide genetic diversity in natural populations. Mol Ecol 17:3808–3817

    Article  PubMed  Google Scholar 

  67. Akey JM, Zhang K, Xiong M, Jin L (2003) The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol Biol Evol 20:232–242

    Article  CAS  PubMed  Google Scholar 

  68. Morin PA, Luikart G, Wayne RK RK, SNP workshop group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216

    Article  Google Scholar 

  69. Feng X, Liu DF, Wang NX, Zhu CD, Jiang GF (2010) The mitochondrial genome of the butterfly Papilio xuthus (Lepidoptera: Papilionidae) and related phylogenetic analyses. Mol Biol Rep. 2010 Mar 8 [Epub ahead of print]. PubMed PMID: 20213506

  70. Hu J, Zhang D, Hao J, Huang D, Cameron S, Zhu C (2009) The complete mitochondrialgenome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event. Mol Biol Rep. 2009 Nov 29 [Epub ahead of print]. PubMed. PMID: 20091125

  71. Kim SR, Kim MI, Hong MY, Kim KY, Kang PD, Hwang JS, Han YS, Jin BR, Kim I (2009) The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae). Mol Biol Rep 36(7):1871–1880. Epub 2008 Nov 2. PubMed PMID: 18979227

  72. Yang L, Wei ZJ, Hong GY, Jiang ST, Wen LP (2009) The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae). Mol Biol Rep 36(6):1441–1449. Epub 2008 Aug 12. PubMed PMID: 18696255

    Google Scholar 

  73. Tamò M, Ekesi S, Maniania NK, Cherry A (2003) Biological control, a non-obvious component of integrated pest management for cowpea. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control in integrated pest management systems in Africa. CABI Publishing, Wallingford, pp 295–309

    Google Scholar 

  74. Srinivasan R, Tamò M, Ooi PA, Easdown W (2007) IPM for Maruca vitrata on food legumes in Asia and Africa. Biocontrol News Inf 28:34–37

    Google Scholar 

Download references

Acknowledgments

This project was supported by a U.S. Agency for International Development (USAID) Bean/Cowpea Collaborative Research Support Program (CRSP) funding to LLM, BRP, IB, CBD, and MFI. VM was supported by a dissertation fellowship from Purdue University. Funding support to BRP, CBD, MB, IB, LLM, and MFI was also partly provided from Dry Grains Pulses Collaborative Research Support Program (CRSP) by the Bureau for Economic Growth, Agriculture, and Trade, U.S. Agency for International Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu M. Margam.

Additional information

The opinions expressed herein are those of the authors and do not necessarily reflect the views of the U.S. Agency for International Development or the U.S. government.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2010_182_MOESM1_ESM.doc

Supplemental Fig. S1: Alignment of a 500 bp mitochondrial coxI fragment and corresponding translation obtained from Maruca sp. samples from Taiwan (TAI), Nigeria (NA), and Puerto Rico (PR). Only variable nucleotide positions are indicated, and non-synonymous changes in the peptide sequence are highlighted. The NsiI (ATGCAT) and SacI (GAGCTC) restriction endonuclease recognition sites that are diagnostic for differentiation of Maruca sp. from non-Puerto Rican locations are underlined. (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margam, V.M., Coates, B.S., Ba, M.N. et al. Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Mol Biol Rep 38, 893–903 (2011). https://doi.org/10.1007/s11033-010-0182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0182-3

Keywords

Navigation