Skip to main content
Log in

The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504

    Article  CAS  PubMed  Google Scholar 

  2. Huang WY, Aramburu J, Douglas PS, Izumo S (2000) Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nat Med 6:482–483

    Article  CAS  PubMed  Google Scholar 

  3. Ho YL, Lin YH, Tsai IJ, Hsieh FJ, Tsai HJ (2007) In vivo assessment of cardiac morphology and function in heart-specific green fluorescent zebrafish. J Formos Med Assoc 106:181–186

    Article  PubMed  Google Scholar 

  4. Inouye S, Tsuji FI (1994) Evidence for redox forms of the aequorea green fluorescent protein. FEBS Lett 351:211–214

    Article  CAS  PubMed  Google Scholar 

  5. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  6. Gu Y, Zou Y, Aikawa R, Hayashi D, Kudoh S, Yamauchi T, Uozumi H, Zhu W, Kadowaki T, Yazaki Y, Komuro I (2001) Growth hormone signaling and apoptosis in neonatal rat cardiomyocytes. Mol Cell Biochem 223:35–46

    Article  CAS  PubMed  Google Scholar 

  7. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97:11403–11408

    Article  CAS  PubMed  Google Scholar 

  8. Houweling AC, van Borren MM, Moorman AFM, Christoffels VM (2005) Expression and regulation of the atrial natriuretic factor encoding gene Nppa during development and disease. Cardiovasc Res 67:583–593

    Article  CAS  PubMed  Google Scholar 

  9. Westerfield M (1995) The zebrafish book. University of Oregon Press, Eugene

    Google Scholar 

  10. Zhou Y, Xu Y, Li J, Liu Y, Zhang Z, Deng F (2009) Znrg, a novel gene expressed mainly in the developing notochord of zebrafish. Mol Biol Rep. doi:10.1007/s11033-009-9702-4

  11. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  12. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144

    Article  CAS  PubMed  Google Scholar 

  13. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  CAS  PubMed  Google Scholar 

  14. Jowett T (2001) Double in situ hybridization techniques in zebrafish. Methods 23:345–358

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Zou P, Liu Y, Deng F (2009) Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation. Mol Biol Rep. doi:10.1007/s11033-009-9739-4

  16. Fink M, Callol-Massot C, Chu A, Ruiz-Lozano P, Belmonte JC, Giles W, Bodmer R, Ocorr K (2009) A new method for the detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46:101–113

    Article  CAS  PubMed  Google Scholar 

  17. Hou PC, Burggren WW (1995) Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis. Am J Physiol 269(5 Pt 2):R1126–R1132

    CAS  PubMed  Google Scholar 

  18. Ocorr K, Perrin L, Lim HY, Qian L, Wu X, Bodmer R (2007) Genetic control of heart function and aging in Drosophila. Trends Cardiovasc Med 17:177–182

    Article  CAS  PubMed  Google Scholar 

  19. Ocorr K, Fink M, Cammarato A, Bernstein S, Bodmer R (2009) Semi-automated optical heartbeat analysis of small hearts. J Vis Exp 31:1435

    PubMed  Google Scholar 

  20. Targoff KL, Thomas S, Deborah Y (2008) Nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Dev Biol 322:314–321

    Article  CAS  PubMed  Google Scholar 

  21. Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2:39–48

    Article  CAS  PubMed  Google Scholar 

  22. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  CAS  PubMed  Google Scholar 

  23. Barros TP, Alderton WK, Reynolds HM, Roach AG, Berghmans S (2008) Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol 154:1400–1413

    Article  CAS  PubMed  Google Scholar 

  24. Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046

    CAS  PubMed  Google Scholar 

  25. Houweling AC, Somi S, Massink MPG, Groenen MA, Moorman AFM, Christoffels VM (2005) Comparative analysis of the natriuretic peptide precursor gene cluster in vertebrates reveals loss of ANF and retention of CNP-3 in chicken. Dev Dyn 233:1076–1082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all members of the Center for Heart Development, College of Life Sciences, in Hunan Normal University, and Key Laboratory of Cell Proliferation and Differentiation, Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, for their excellent technical assistance and encouragement. This study was supported in part by the National Basic Research Program of China (2005CB522505) and National Natural Science Foundation of China (No. 30930054, 30970425, 30971105, 30971663, 30900851, 30721064, 30871340, 30871417, 30771146, 30771170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiushan Wu.

Additional information

Wen Huang and Yun Deng are contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(TIFF 224 kb)

(TIFF 603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Deng, Y., Dong, W. et al. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development. Mol Biol Rep 38, 793–799 (2011). https://doi.org/10.1007/s11033-010-0168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0168-1

Keywords

Navigation