Skip to main content
Log in

Glutamate receptors and signal transduction in learning and memory

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The plasticity of the central nervous system helps form the basis for the neurobiology of learning and memory. Long-term potentiation (LTP) is the main form of synaptic plasticity, reflecting the activity level of the synaptic information storage process, and provides a good model to study the underlying mechanisms of learning and memory. The glutamate receptor-mediated signal pathway plays a key role in the induction and maintenance of LTP, and hence the regulation of learning and memory. The progress in the understanding of the glutamate receptors and related signal transduction systems in learning and memory research are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100:433–442

    Article  CAS  PubMed  Google Scholar 

  2. Qiu J, Hong Q, Chen RH, Tong ML, Zhang M, Fei L, Pan XQ, Guo M, Guo XR, Chi X (2010) Gene expression profiles in the prefrontal cortex of SHR rats by cDNA microarrays. Mol Biol Rep 37:1733–1740

    Article  CAS  PubMed  Google Scholar 

  3. Yuan FL, Chen FH, Lu WG, Li X (2009) Acid-sensing ion channels 3: a potential therapeutic target for pain treatment in arthritis. Mol Biol Rep. doi:10.1007/s11033-009-9907-6

  4. Uchida M, Sugaya M, Kanamaru T, Hisatomi H (2010) Alternative RNA splicing in expression of the glutathione synthetase gene in human cells. Mol Biol Rep 37:2105–2109

    Article  CAS  PubMed  Google Scholar 

  5. Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, Christensen BM, Li J (2009) An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes. Mol Biol Rep. doi:10.1007/s11033-009-9902-y

  6. Singh K, Prasad S (2008) Differential expression of Fmr-1 mRNA and FMRP in female mice brain during aging. Mol Biol Rep 35:677–684

    Article  CAS  PubMed  Google Scholar 

  7. Chai J, Xiong Q, Zhang PP, Shang YY, Zheng R, Peng J, Jiang SW (2010) Evidence for a new allele at the SERCA1 locus affecting pork meat quality in part through the imbalance of Ca2+ homeostasis. Mol Biol Rep 37:613–619

    Article  CAS  PubMed  Google Scholar 

  8. Liu H, Zhang Y, Li S, Yan Y, Li Y (2009) Dynamic regulation of glutamate decarboxylase 67 gene expression by alternative promoters and splicing during rat testis maturation. Mol Biol Rep. doi:10.1007/s11033-009-9889-4

  9. Song J, Zhou C, Liu R, Wu X, Wu D, Hu X, Ding Y (2010) Expression and purification of recombinant arginine decarboxylase (speA) from Escherichia coli. Mol Biol Rep 37:1823–1829

    Article  CAS  PubMed  Google Scholar 

  10. Singh K, Gaur P, Prasad S (2007) Fragile x mental retardation (Fmr-1) gene expression is down regulated in brain of mice during aging. Mol Biol Rep 34(3):173–181

    Article  CAS  PubMed  Google Scholar 

  11. Var A, Utük O, Akçali S, Sanlidağ T, Uyanik BS, Dinç G (2009) Impact of hemostatic gene single point mutations in patients with non-diabetic coronary artery disease. Mol Biol Rep 36(8):2235–2243

    Article  CAS  PubMed  Google Scholar 

  12. Goebel DJ, Poosch MS (1999) NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A. Brain Res Mol Brain Res 69:164–170

    Article  CAS  PubMed  Google Scholar 

  13. Al-Hallaq RA, Jarabek BR, Fu Z, Vicini S, Wolfe BB, Yasuda RP (2002) Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits. Mol Pharmacol 62:1119–1127

    Article  CAS  PubMed  Google Scholar 

  14. Zheng F, Gingrich MB, Traynelis SF, Conn PJ (1998) Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci 1:185–191

    Article  CAS  PubMed  Google Scholar 

  15. Bortolotto ZA, Clarke VR, Delany CM, Parry MC, Smolders I, Vignes M, Ho KH, Miu P, Brinton BT, Fantaske R, Ogden A, Gates M, Ornstein PL, Lodge D, Bleakman D, Collingridge GL (1999) Kainate receptors are involved in synaptic plasticity. Nature 402:297–301

    Article  CAS  PubMed  Google Scholar 

  16. Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357

    Article  CAS  PubMed  Google Scholar 

  17. Kim JH, Huganir RL (1999) Organization and regulation of proteins at synapses. Curr Opin Cell Biol 11:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Basn S, Volk B, Wisden W, Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14:5525–5547

    Google Scholar 

  19. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  CAS  PubMed  Google Scholar 

  20. Dietrich D, Beck H, Kral T, Clusmann H, Elger CE, Schramm J (1997) Metabotropic glutamate receptors modulate synaptic transmission in the perforant path: pharmacology and localization of two distinct receptors. Brain Res 767:220–227

    Article  CAS  PubMed  Google Scholar 

  21. Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS (2001) mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 40:856–865

    Article  CAS  PubMed  Google Scholar 

  22. Bashir ZI, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ, Henley JM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350

    Article  CAS  PubMed  Google Scholar 

  23. Connor JA, Petrozzino J, Pozzo-Miller LD, Otani S (1999) Calcium signals in long-term potentiation and long-term depression. Can J Physiol Pharmacol 77:722–734

    Article  CAS  PubMed  Google Scholar 

  24. Vignes M, Collingridge GL (1997) The synaptic activation of kainate receptors. Nature 388:179–182

    Article  CAS  PubMed  Google Scholar 

  25. Yang SN, Tang YG, Zucker RS (1999) Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 81:781–787

    CAS  PubMed  Google Scholar 

  26. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721

    Article  CAS  PubMed  Google Scholar 

  27. Nikolaev E, Tischmeyer W, Krug M, Matthies H, Kaczmarek L (1991) c-fos protooncogene expression in rat hippocampus and entorhinal cortex following tetanic stimulation of the perforant path. Brain Res 560:346–349

    Article  CAS  PubMed  Google Scholar 

  28. Isaac JT, Crair MC, Nicoll RA, Malenka RC (1997) Silent synapses during development of thalamocortical inputs. Neuron 18:269–280

    Article  CAS  PubMed  Google Scholar 

  29. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14:311–317

    Article  CAS  PubMed  Google Scholar 

  30. Feld M, Dimant B, Delorenzi A, Coso O, Romano A (2005) Phosphorylation of extra-nuclear ERK/MAPK is required for long-term memory consolidation in the crab Chasmagnathus. Behav Brain Res 158:251–261

    Article  CAS  PubMed  Google Scholar 

  31. Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84:803–833

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe S, Hoffman DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99:8366–8371

    Article  CAS  PubMed  Google Scholar 

  33. Nolan Y, Martin D, Campbell VA, Lynch MA (2004) Evidence of a protective effect of phosphatidylserine-containing liposomes on lipopolysaccharide-induced impairment of long-term potentiation in the rat hippocampus. J Neuroimmunol 151:12–23

    Article  CAS  PubMed  Google Scholar 

  34. Barry CE, Nolan Y, Clarke RM, Lynch A, Lynch MA (2005) Activation of c-Jun-N-terminal kinase is critical in mediating lipopolysaccharide-induced changes in the rat hippocampus. J Neurochem 93:221–231

    Article  CAS  PubMed  Google Scholar 

  35. Butler MP, O’Connor JJ, Moynagh PN (2004) Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neuroscience 124:319–326

    Article  CAS  PubMed  Google Scholar 

  36. Kelly A, Vereker E, Nolan Y, Brady M, Barry C, Loscher CE, Mills KH, Lynch MA (2003) Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1 beta on long term potentiation in rat dentate gyrus. J Biol Chem 278:19453–19462

    Article  CAS  PubMed  Google Scholar 

  37. Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87:1025–1035

    Article  CAS  PubMed  Google Scholar 

  38. Stevens CF, Wang Y (1993) Reversal of long-term potentiation by inhibitors of haem oxygenase. Nature 364:147–149

    Article  CAS  PubMed  Google Scholar 

  39. Impey S, Smith DM, Obrietan K, Donahue R, Wade C, Storm DR (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1:595–601

    Article  CAS  PubMed  Google Scholar 

  40. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 98:2808–2813

    Article  CAS  PubMed  Google Scholar 

  41. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  CAS  PubMed  Google Scholar 

  42. Vallejo M, Gosse ME, Beckman W, Habener JF (1995) Impaired cyclic AMP-dependent phosphorylation renders CREB a repressor of C/EBP-induced transcription of the somatostatin gene in an insulinoma cell line. Mol Cell Biol 15:415–424

    CAS  PubMed  Google Scholar 

  43. Nikolaev E, Werka T, Kaczmarek L (1992) C-fos protooncogene expression in rat brain after long-term training of two-way active avoidance reaction. Behav Brain Res 48:91–94

    Article  CAS  PubMed  Google Scholar 

  44. Freeman FM, Rose SP (1999) Expression of Fos and Jun proteins following passive avoidance training in the day-old chick. Learn Mem 6:389–397

    CAS  PubMed  Google Scholar 

  45. Chiapponi C, Carta A, Petrucco S, Maraini G, Ottonello S (2001) Transcriptional up-regulation of the protooncogenes c-fos and c-jun following vitreous removal and short-term in vitro culture of bovine lenses. Exp Eye Res 72:565–571

    Article  CAS  PubMed  Google Scholar 

  46. Shieh PB, Ghosh A (1999) Molecular mechanisms underlying activity-dependent regulation of BDNF expression. J Neurobiol 41:127–134

    Article  CAS  PubMed  Google Scholar 

  47. Lipsky RH, Xu K, Zhu D, Kelly C, Terhakopian A, Novelli A, Marini AM (2001) Nuclear factor kappa B is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection. J Neurochem 78:254–264

    Article  CAS  PubMed  Google Scholar 

  48. Balschun D, Wetzel W (2002) Inhibition of mGluR5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol Biochem Behav 73:375–380

    Article  CAS  PubMed  Google Scholar 

  49. Izquierdo LA, Barros DM, Medina JH, Izquierdo I (2000) Novelty enhances retrieval of one-trial avoidance learning in rats 1 or 31 days after training unless the hippocampus is inactivated by different receptor antagonists and enzyme inhibitors. Behav Brain Res 117:215–220

    Article  CAS  PubMed  Google Scholar 

  50. Forst CV (2002) Network genomics—a novel approach for the analysis of biological systems in the post-genomic era. Mol Biol Rep 29:265–280

    Article  CAS  PubMed  Google Scholar 

  51. Yang ZJ, Zhang YR, Chen B, Zhang SL, Jia EZ, Wang LS, Zhu TB, Li CJ, Wang H, Huang J, Cao KJ, Ma WZ, Wu B, Wang LS, Wu CT (2009) Phase I clinical trial on intracoronary administration of Ad-hHGF treating severe coronary artery disease. Mol Biol Rep 36:1323–1329

    Article  CAS  PubMed  Google Scholar 

  52. van Ham M, Hendriks W (2003) PDZ domains-glue and guide. Mol Biol Rep 30:69–82

    Article  PubMed  Google Scholar 

  53. Ma YL, Peng JY, Liu WJ, Zhang P, Huang L, Gao BB, Shen TY, Zhou YK, Chen HQ, Chu ZX et al (2009) Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol Cell Proteomics 8(8):1878–1890

    Article  CAS  PubMed  Google Scholar 

  54. Deng WD, Shu W, Yang SL, Shi XW, Mao HM (2009) Pigmentation in black-boned sheep (Ovis aries): association with polymorphism of the MC1R gene. Mol Biol Rep 36:431–436

    Article  CAS  PubMed  Google Scholar 

  55. Miao Y, Qiu Y, Lin Y, Miao Z, Zhang J, Lu X (2010) Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism. Mol Biol Rep. doi:10.1007/s11033-010-9998-0

  56. Horiike Y, Kobayashi H, Sekiguchi T (2009) Ran GTPase guanine nucleotide exchange factor RCC1 is phosphorylated on serine 11 by cdc2 kinase in vitro. Mol Biol Rep 36:717–723

    Article  CAS  PubMed  Google Scholar 

  57. Subramanian MV, James TJ (2010) Supplementation of deprenyl attenuates age associated alterations in rat cerebellum. Mol Biol Rep. doi:10.1007/s11033-010-0017-2

  58. Cai L, Li Y, Liu F, Zhang W, Huo B, Zheng W, Ding R, Guo J, Zhao Q, Dou K (2009) The influence of ADAR1’s regulation on lymphocyte cell function during rejection. Mol Biol Rep. doi:10.1007/s11033-009-9804-z

  59. Liu H, Wang Z, Li S, Zhang Y, Yan YC, Li YP (2009) Utilization of an intron located polyadenlyation site resulted in four novel glutamate decarboxylase transcripts. Mol Biol Rep 36:1469–1474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Grants from the Medical Scientific Research Foundation of Jiangsu Province, PR China (Grant No. H200645); and the Science Foundation of the Health Bureau. Wuxi City, PR China (Grant No. XM0805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, S., Zhang, Y., Zhang, J. et al. Glutamate receptors and signal transduction in learning and memory. Mol Biol Rep 38, 453–460 (2011). https://doi.org/10.1007/s11033-010-0128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0128-9

Keywords

Navigation