Skip to main content
Log in

Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis

Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In plants, anthocyanins often appear at specific developmental stages, but are also induced by a number of environmental factors. The coordinated expression of genes encoding the anthocyanin biosynthetic pathway enzymes is controlled at the transcriptional level usually by an R2R3Myb transcription factor. However, little is known about the effects of R2R3-Myb on plant resistance to environmental stresses. In this study, we introduced an R2R3Myb transcription factor gene Mdmyb10, a regulatory gene of anthocyanin biosynthesis in apple fruit, into Arabidopsis and analyzed its function to osmotic stress in transgenic plants. Under high osmotic stress, the Mdmyb10 over-expressing plants exhibited growth better than wild-type plants. The elevated tolerance of the transgenic plants to osmotic stress was confirmed by the changes of flavonoids, chlorophyll, malondialdehyde and proline contents. These results preliminarily showed that the Mdmyb10 can possibly be used to enhance the high osmotic-tolerant ability of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bray EA, Bailey SJ, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  2. Cone KC, Cocciolone SM, Burr FA, Burr B (1993) Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell 5:1795–1805

    Article  CAS  PubMed  Google Scholar 

  3. Richard VE, Roger PH, Jo P, David ES, Sumathi KA, Andrew CA (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, Mdmyb10. Plant J 49:414–427

    Article  Google Scholar 

  4. Cornelissen BJ, Hooft V, Huijduijnen RA, Bol JF (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321:531–532

    Article  CAS  PubMed  Google Scholar 

  5. Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequence. Nucleic Acids Res 32:e98

    Article  PubMed  Google Scholar 

  6. Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang KK (2007) Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clin Vaccine Immunol 14:464–469

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Henriques R, Lin SS (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  8. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  9. Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Hou XL, Yao QH (2010) Cyanobacteria MT gene SmtA enhance zinc tolerance in Arabidopsis. Mol Biol Rep 37(2):1105–1110

    Article  CAS  PubMed  Google Scholar 

  10. Zhu B, Xiong AS, Peng RH, Xu J, Zhou J, Xu JT, Jin XF, Zhang Y, Hou XL, Yao QH (2008) Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. BMB Rep 41(5):382–387

    CAS  PubMed  Google Scholar 

  11. Zhu B, Xiong AS, Peng RH, Xu J, Jin XF, Meng XR, Yao QH (2010) Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37(2):961–966

    Article  CAS  PubMed  Google Scholar 

  12. Jia Z, Tang M, Wu J (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  Google Scholar 

  13. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  14. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline in water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  15. Havaux M, Lutz C, Grimm B (2003) Chloroplast membrane photostability in chlP transgenic tobacco plants deficient in tocopherols. Plant Physiol 132:300–310

    Article  CAS  PubMed  Google Scholar 

  16. Peng RH, Xiong AS, Yao QH (2006) A direct and efficient PAGE-mediated overlap extension method for gene multiple-site mutagenesis. Appl Microbiol Biotechnol 73:234–240

    Article  CAS  PubMed  Google Scholar 

  17. Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  CAS  PubMed  Google Scholar 

  18. Pizzi A, Cameron FA (1986) Flavonoid tannins—structural wood components for drought-resistance mechanisms of plants. Wood Sci Technol 20:119–124

    Article  CAS  Google Scholar 

  19. Moore JP, Westall KL, Ravenscroft N, Farrant JM, Lindsey GG, Brandt WF (2004) The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5-tri-O-galloylquinic acid, protects membranes against desiccation and free radical induced oxidation. Polyphenol Commun 2004:79

    Google Scholar 

  20. Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    Article  CAS  Google Scholar 

  21. Esterbauer H, Schauer RJ, Zololner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  22. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  Google Scholar 

  23. Bernd W, Gareth IJ (1998) Phenylpropanoid biosynthesis and its regulation. Plant Biol 1:251–257

    Google Scholar 

  24. Brenda WS (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  Google Scholar 

  25. Jean MR, Lucien K, Isabelle D, Lucille P (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  Google Scholar 

  26. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  27. Wong CC, Li HB, Cheng KW, Chen F (2006) A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem 97:705–711

    Article  CAS  Google Scholar 

  28. Juan B, Charlotte P (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48(1):75–92

    Article  Google Scholar 

  29. Voetberg GS, Sharp RE (1991) Growth of the maize primary root at low water potential. III. Roles of increased praline deposition in osmotic adjustment. Plant Physiol 96:1125–1130

    Article  CAS  PubMed  Google Scholar 

  30. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant cell 2:503–512

    Article  CAS  PubMed  Google Scholar 

  31. Tran LS, Nakashima K, Shinozaki K, Yamaguchi SK (2007) Plant gene networks in osmotic stress response from genes to regulatory networks. Methods Enzymol 428:109–128

    Article  CAS  PubMed  Google Scholar 

  32. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  33. Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Plant Physiol 76:456–459

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Shanghai and National Natural Science Foundation (30670179, 30800602, 08ZR1417200); 863 Program (2006AA10Z117, 2006AA06Z358, 2008AA10Z401); Shanghai Project for ISTC (08540706500); The Key Project Fund of the Shanghai Municipal Committee of Agriculture (No. 2008-7-5) and Shanghai Rising-Star Program (08QH14021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Hong Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, JJ., Zhang, Z., Peng, RH. et al. Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep 38, 205–211 (2011). https://doi.org/10.1007/s11033-010-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0096-0

Keywords

Navigation