Skip to main content
Log in

The 5178C/A and 16189T/C polymorphisms of mitochondrial DNA in Korean men and their associations with blood iron metabolism

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Several studies reported that there were the associations between the genetic polymorphisms in the mitochondrial DNA (mtDNA) and some blood iron markers. Thus, we tried to investigate the relationship between two genetic polymorphisms (5178C/A and 16189T/C) in the mtDNA and several blood iron markers in Korean men. A total of unrelated 131 Korean men were participated in this study. Two genetic polymorphisms in the mtDNA was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method, and hematological or biochemical assay performed by autoanalyzer. Although the 16189T/C polymorphism was not significantly associated with any iron parameters measured in this study, we found that the 5178C/A polymorphism was significantly associated with red blood cell (RBC) count and hematocrit (HCT) value in Korean men (P < 0.05). Therefore, our data suggest that the 5178C/A polymorphism in the mtDNA might be useful as a genetic marker with respect to blood iron metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–565

    Article  CAS  PubMed  Google Scholar 

  2. Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 91:8739–8746

    Article  CAS  PubMed  Google Scholar 

  3. Graff C, Clayton DA, Larsson NG (1999) Mitochondrial medicine: recent advances. J Intern Med 246:11–23

    Article  CAS  PubMed  Google Scholar 

  4. Murakami H, Soma R, Hayashi J et al (2001) Relationship between mitochondrial DNA polymorphism and the individual differences in aerobic performance. Jpn J Physiol 51:563–568

    Article  CAS  PubMed  Google Scholar 

  5. Scott RA, Wilson RH, Goodwin WH et al (2005) Mitochondrial DNA lineages of elite Ethiopian athletes. Comp Biochem Physiol Part B 140:497–503

    Article  Google Scholar 

  6. Walter PB, Knutson MD, Paler-Martinez A et al (2002) Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci USA 99:2264–2269

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka M, Gong J-S, Zhang J et al (1998) Mitochondrial genotype associated with longevity. Lancet 351:185–186

    Article  CAS  PubMed  Google Scholar 

  8. Kokaze A, Ishikawa M, Matsunaga N et al (2001) Association of the mitochondrial DNA 5178 A/C polymorphism with serum lipid levels in the Japanese population. Hum Genet 109:521–525

    Article  CAS  PubMed  Google Scholar 

  9. Kokaze A, Ishikawa M, Matsunaga N et al (2004) Longevity-associated mitochondrial DNA 5178 A/C polymorphism and blood pressure in the Japanese population. J Hum Hypertens 18:41–45

    Article  CAS  PubMed  Google Scholar 

  10. Mukae S, Aoki S, Itoh S et al (2003) Mitochondrial 5178 A/C genotype is associated with acute myocardial infarction. Circ J 67:16–20

    Article  CAS  PubMed  Google Scholar 

  11. Takagi K, Yamada Y, Gong J-S et al (2004) Association of 5178C → A(Leu237Met) polymorphism in the mitochondrial DNA with a low prevalence of myocardial infarction in Japanese individuals. Atherosclerosis 175:281–286

    Article  CAS  PubMed  Google Scholar 

  12. Ohkubo R, Nakagawa M, Ikeda K-I et al (2002) Cerebrovascular disorders and genetic polymorphisms: mitochondrial DNA 5178C is predominant in cerebrovascular disorders. J Neurol Sci 198:31–35

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Taniyama M, Suzuki Y et al (2001) Association of the mitochondrial DNA 5178A/C polymorphism with maternal inheritance and onset of type 2 diabetes in Japanese patients. Exp Clin Endocrinol Diabetes 109:361–364

    Article  CAS  PubMed  Google Scholar 

  14. Matsunaga H, Ogawa O, Tanaka Y et al (2001) Antiatherogenic mitochondrial genotype in patients with type 2 diabetes. Diabetes Care 24:500–503

    Article  CAS  PubMed  Google Scholar 

  15. Kokaze A, Ishikawa M, Matsunaga N et al (2005) Interaction between longevity-associated mitochondrial DNA 5178 C/A polymorphism and cigarette smoking on hematological parameters in Japanese men. Arch Gerontol Geriatr 40:113–122

    Article  CAS  PubMed  Google Scholar 

  16. Poulton J, Brown MS, Cooper A et al (1998) A common mitochondrial DNA variant is associated with insulin resistance in adult life. Diabetologia 41:54–58

    Article  CAS  PubMed  Google Scholar 

  17. Casteels K, Ong K, Phillips D et al (1999) Mitochondrial 16189 variant, thinness at birth, and type-2 diabetes. Lancet 353:1499–1500

    Article  CAS  PubMed  Google Scholar 

  18. Das S, Bennett AJ, Sovio U et al (2007) Detailed analysis of variation at and around mitochondrial position 16189 in a large Finnish cohort reveals no significant associations with early growth or metabolic phenotypes at age 31 years. J Clin Endocrinol Metab 92:3219–3223

    Article  CAS  PubMed  Google Scholar 

  19. Kim JH, Park KS, Cho YM et al (2002) The prevalence of the mitochondrial DNA 16189 variant in non-diabetic Korean adults and its association with higher fasting glucose and body mass index. Diabet Med 19:681–684

    Article  CAS  PubMed  Google Scholar 

  20. Liou CW, Lin TK, Weng HH et al (2007) A common mitochondrial DNA variant and increased body mass index as associated factor for development of type 2 diabetes: additive effects of genetic and environmental factors. J Clin Endocrinol Metab 92:235–239

    Article  CAS  PubMed  Google Scholar 

  21. Park KS, Chan JC, Chuang LM et al (2008) A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia 51:602–608

    Article  CAS  PubMed  Google Scholar 

  22. Poulton J, Luan J, Macaulay V et al (2002) Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet 11:1581–1583

    Article  CAS  PubMed  Google Scholar 

  23. Tang DL, Zhou X, Li X (2005) Variation of mitochondrial gene and the association with type 2 diabetes mellitus in a Chinese population. Diabetes Res Clin Pract 68:S10–S21

    Article  Google Scholar 

  24. Weng S-W, Liou C-W, Lin T-K et al (2005) Association of mitochondrial deoxyribonucleic acid 16189 variant (T → C transition) with metabolic syndrome in Chinese adults. J Clin Endocrinol Metab 90:5037–5040

    Article  CAS  PubMed  Google Scholar 

  25. Beutler E, Beutler L, Lee PL et al (2004) The mitochondrial nt 16189 polymorphism and hereditary hemochromatosis. Blood Cells Mol Dis 33:344–345

    Article  CAS  PubMed  Google Scholar 

  26. Livesey KJ, Wimhurst VLC, Carter K et al (2004) The 16189 variant of mitochondrial DNA occurs more frequently in C282Y homozygotes with haemochromatosis than those without iron loading. J Med Genet 41:6–10

    Article  CAS  PubMed  Google Scholar 

  27. Salvador M, Villegas A, Llorente L et al (2007) 16189 Mitochondrial variant and iron overload. Ann Hematol 86:463–464

    Article  PubMed  Google Scholar 

  28. Österreicher CH, Datz C, Sticket F et al (2005) Association of myeloperoxidase promoter polymorphism with cirrhosis in patients with hereditary hemochromatosis. J Hepatol 42:914–919

    Article  PubMed  Google Scholar 

  29. Marchington DR, Poulton J, Sellar A et al (1996) Do sequence variants in the major non-coding region of the mitochondrial genome influence mitochondrial mutations associated with disease? Hum Mol Genet 5:473–479

    Article  CAS  PubMed  Google Scholar 

  30. Agani FH, Pichiule P, Chavez JC et al (2000) The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 46:35863–35867

    Article  Google Scholar 

  31. Walter PB, Knutson MD, Paler-Martinez A et al (2002) Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci USA 99:2264–2269

    Article  CAS  PubMed  Google Scholar 

  32. Yao Y-G, Kong Q-P, Zhang Y-P (2002) Mitochondrial DNA 5178A polymorphism and longevity. Hum Genet 111:462–463

    Article  PubMed  Google Scholar 

  33. Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    Article  CAS  PubMed  Google Scholar 

  34. Iwao N, Iwao S, Kobayashi F et al (2003) No association of the mitochondrial genotype (Mt5178A/C) with six cancers in a Japanese population. Asian Pac J Cancer Prev 4:331–336

    PubMed  Google Scholar 

  35. Kim JH, Park KS, Cho YM et al (2002) The prevalence of the mitochondrial DNA 16189 variant in non-diabetic Korean adults and its association with higher fasting glucose and body mass index. Diabet Med 19:681–684

    Article  CAS  PubMed  Google Scholar 

  36. Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828–842

    CAS  PubMed  Google Scholar 

  37. Liou CW, Lin TK, Weng HH et al (2007) A common mitochondrial DNA variant and increased body mass index as associated factor for development of type 2 diabetes: additive effects of genetic and environmental factors. J Clin Endocrinol Metab 92:235–239

    Article  CAS  PubMed  Google Scholar 

  38. Weng S-W, Liou C-W, Lin T-K et al (2005) Association of mitochondrial deoxyribonucleic acid 16189 variant (T → C transition) with metabolic syndrome in Chinese adults. J Clin Endocrinol Metab 90:5037–5040

    Article  CAS  PubMed  Google Scholar 

  39. Mountain JL, Herbert JM, Bhattacharyya S et al (1995) Demographic history of India and mtDNA-sequence diversity. Am J Hum Genet 56:979–992

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Koo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B.Y., Choi, H., Kwon, J. et al. The 5178C/A and 16189T/C polymorphisms of mitochondrial DNA in Korean men and their associations with blood iron metabolism. Mol Biol Rep 37, 4051–4057 (2010). https://doi.org/10.1007/s11033-010-0064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0064-8

Keywords

Navigation