Skip to main content

Advertisement

Log in

TCR mispairing in genetically modified T cells was detected by fluorescence resonance energy transfer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Adoptive transfer of T lymphocytes genetically modified with antigen-specific T cell receptor (TCR) constitutes a promising approach for the treatment of malignant tumors and virus infections. One of the challenges in this field of TCR gene therapy is TCR mispairing defining the incorrect pairing between an introduced TCR α or β chain and an endogenous TCR β or α chain, which results in diluted surface expression of the therapeutic TCR αβ. Although there is currently no clinical evidence for TCR mispairing-induced autoreactivity, the generation of autoreactive TCRs upon TCR mispairing cannot be excluded. So it is important to detect TCR mispairing to evaluate the efficiency of TCR gene therapy. Currently there is no available quantitative assay for the measurement of TCR mispairing. Fluorescence resonance energy transfer (FRET) is a powerful approach for identifying biologically relevant molecular interactions with high spatiotemporal resolution. In this study, we described the method of FRET for the measurement of TCR mispairing. It was found that the average FRET efficiency was 12.2 ± 7.5% in HeLa cells and 8.4 ± 3.3% in Jurkat cells (P = 0.026605). The reduction of FRET efficiency in lymphocytes reflected the presence of mispaired TCRs, indicating there were ~30% TCR mispairing in lymphocytes. This study provides a quantitative intracellular assay that can be used to detect TCR mispairing in genetically modified T lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stauss HJ, Cesco-Gaspere M, Thomas S, Hart DP, Xue SA, Holler A, Wright G, Perro M, Little AM, Pospori C, King J, Morris EC (2007) Monoclonal T-cell receptors: new reagents for cancer therapy. Mol Ther 15:1744–1750

    Article  CAS  PubMed  Google Scholar 

  2. Ou Y, Tong C, Zhang Y, Cai P, Gu J, Liu Y, Liu H, Wang H, Chu B, Zhu P (2009) An improved design of PCR primers for detection of human T cell receptor beta chain repertoire. Mol Biol Rep 36:145–152

    Article  CAS  PubMed  Google Scholar 

  3. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  CAS  PubMed  Google Scholar 

  4. Clay TM, Custer MC, Spiess PJ, Nishimura MI (1999) Potential use of T cell receptor genes to modify hematopoietic stem cells for the gene therapy of cancer. Pathol Oncol Res 5:3–15

    Article  CAS  PubMed  Google Scholar 

  5. Schaft N, Willemsen RA, de Vries J, Lankiewicz B, Essers BW, Gratama JW, Figdor CG, Bolhuis RL, Debets R, Adema GJ (2003) Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol 170:2186–2194

    CAS  PubMed  Google Scholar 

  6. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI (1999) Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 163:507–513

    CAS  PubMed  Google Scholar 

  7. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD (2000) Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 74:8207–8212

    Article  CAS  PubMed  Google Scholar 

  8. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J, Ruppert T, Bolhuis RL, Melief CJ, Huber C, Stauss HJ, Theobald M (2001) Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2:962–970

    Article  CAS  PubMed  Google Scholar 

  9. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E, Willemze R, Falkenburg JH (2003) Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 102:3530–3540

    Article  CAS  PubMed  Google Scholar 

  10. Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A, Apperley J, Engels B, Uckert W, Morris E, Stauss H (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 106:3062–3067

    Article  CAS  PubMed  Google Scholar 

  11. Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Darcy PK (2008) Adoptive transfer of gene-modified primary NK cells can specifically inhibit tumor progression in vivo. J Immunol 181:3449–3455

    CAS  PubMed  Google Scholar 

  12. Marcu-Malina V, van Dorp S, Kuball J (2009) Re-targeting T-cells against cancer by gene-transfer of tumor-reactive receptors. Exp Opin Biol Ther 9:579–591

    Article  CAS  Google Scholar 

  13. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Zhang H, Wang H (2009) Analysis of predicted CD8(+) T cell epitopes from proteins encoded by the specific RD regions of Mycobacterium tuberculosis for vaccine development and specific diagnosis. Mol Biol Rep (Epub ahead of print). doi:10.1007/s11033-009-9613-4

  15. Xue S, Gillmore R, Downs A, Tsallios A, Holler A, Gao L, Wong V, Morris E, Stauss HJ (2005) Exploiting T cell receptor genes for cancer immunotherapy. Clin Exp Immunol 139:167–172

    Article  CAS  PubMed  Google Scholar 

  16. Voss RH, Kuball J, Engel R, Guillaume P, Romero P, Huber C, Theobald M (2006) Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression. Immunol Res 34:67–87

    Article  CAS  PubMed  Google Scholar 

  17. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66:8878–8886

    Article  CAS  PubMed  Google Scholar 

  18. Sebestyén Z, Schooten E, Sals T, Zaldivar I, San José E, Alarcón B, Bobisse S, Rosato A, Szöllosi J, Gratama JW, Willemsen RA, Debets R (2008) Human TCR that incorporate CD3zeta induce highly preferred pairing between TCRalpha and beta chains following gene transfer. J Immunol 180:7736–7746

    PubMed  Google Scholar 

  19. Richman SA, Aggen DH, Dossett ML, Donermeyer DL, Allen PM, Greenberg PD, Kranz DM (2009) Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain ValphaVbeta fragments. Mol Immunol 46:902–916

    Article  CAS  PubMed  Google Scholar 

  20. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109:2331–2338

    Article  CAS  PubMed  Google Scholar 

  21. Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67:3898–3903

    Article  CAS  PubMed  Google Scholar 

  22. Voss RH, Willemsen RA, Kuball J, Grabowski M, Engel R, Intan RS, Guillaume P, Romero P, Huber C, Theobald M (2008) Molecular design of the C{alpha} interface favors specific pairing of introduced TCR{alpha} in human T cells. J Immunol 180:391–401

    CAS  PubMed  Google Scholar 

  23. Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29:58–73

    Article  CAS  PubMed  Google Scholar 

  24. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Elangovan M, Periasamy A (2005) FRET data analysis: the algorithm. In: Periasamy A, Day RN (eds) Molecular imaging: FRET microscopy and spectroscopy. Oxford University Press, New York, pp 126–145

    Google Scholar 

  26. Okuno T, Yamabayashi H, Kogure K (2010) Comparison of intracellular localization of Nubp1 and Nubp2 using GFP fusion proteins. Mol Biol Rep 37:1165–1168

    Article  CAS  PubMed  Google Scholar 

  27. de Witte MA, Coccoris M, Wolkers MC, van den Boom MD, Mesman EM, Song JY, van der Valk M, Haanen JB, Schumacher TN (2006) Targeting self-antigens through allogeneic TCR gene transfer. Blood 108:870–877

    Article  PubMed  Google Scholar 

  28. Sommermeyer D, Neudorfer J, Weinhold M, Leisegang M, Engels B, Noessner E, Heemskerk MH, Charo J, Schendel DJ, Blankenstein T, Bernhard H, Uckert W (2006) Designer T cells by T cell receptor replacement. Eur J Immunol 36:3052–3059

    Article  CAS  PubMed  Google Scholar 

  29. Heemskerk MH, Hagedoorn RS, van der Hoorn MA, van der Veken LT, Hoogeboom M, Kester MG, Willemze R, Falkenburg JH (2007) Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR-CD3 complex. Blood 109:235–243

    Article  CAS  PubMed  Google Scholar 

  30. Pollok BA, Heim R (1999) Using GFP in FRET-based applications. Trends Cell Biol 9:57–60

    Article  CAS  PubMed  Google Scholar 

  31. Schmid JA, Sitte HH (2003) Fluorescence resonance energy transfer in the study of cancer pathways. Curr Opin Oncol 15:55–64

    Article  PubMed  Google Scholar 

  32. Harikumar KG, Miller LJ (2009) Application of fluorescence resonance energy transfer techniques to establish ligand-receptor orientation. Methods Mol Biol 552:293–304

    Article  CAS  PubMed  Google Scholar 

  33. Bavec A (2009) Constructing glucagon like peptide-1 receptor fused with derivatives of GFP for visualizing protein-protein interaction in living cells. Mol Biol Rep (Epub ahead of print). doi:10.1007/s11033-009-9813-y

  34. Uckert W, Schumacher TNM (2009) TCR transgenes and transgene cassettes for TCR gene therapy: status in 2008. Cancer Immunol Immunother 58:809–822

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Tao Deng and Jian Liu for their helpful reviews and suggestions. This work is supported by a grant from National Scientific and Technological Major Special Project for “Significant Creation of New Drugs” (No. 2009ZX09103-708), a grant from Nurturing Project for the Excellent and Creative Youth Scholars of Colleges and Universities of Guangdong (No. 2008342), and a grant from Faculty Development and Research Funds of GDPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, H., Zhang, W., Hu, Q. et al. TCR mispairing in genetically modified T cells was detected by fluorescence resonance energy transfer. Mol Biol Rep 37, 3951–3956 (2010). https://doi.org/10.1007/s11033-010-0053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0053-y

Keywords

Navigation