Skip to main content
Log in

A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In the present work, a second gene encoding protein disulfide isomerase (PDI2) was cloned and characterized from Schizosaccharomyces pombe, and its regulation was studied. The structural gene encoding PDI2 was amplified from the genomic DNA using PCR, and ligated into the E. coli-yeast shuttle vector pRS316 to generate the recombinant plasmid pYPDI2. The determined DNA sequence carries 2,578 bp and is able to encode a protein of 726 amino acid sequence with CGAC at the putative active site. The fission yeast cells harboring pYPDI2 contained 1.62- and 2.73-fold higher PDI activity than the control yeast cells in exponential and stationary phases, respectively, indicating that the cloned gene is in vivo functioning. The PDI2 mRNA levels in both vector control and pYPDI2-containing yeast cells were found to be significantly higher in the stationary phase than in the exponential phase, suggesting that expression of the PDI2 gene is under stationary control. The yeast cells harboring pYPDI2 showed enhanced survival on minimal media plates containing nitric oxide (NO)-generating sodium nitroprusside (SNP) and no nitrogen. The synthesis of β-galactosidase from the PDI2-lacZ fusion gene was markedly enhanced in the Pap1-positive KP1 cells by SNP and nitrogen starvation. However, the enhancement in the synthesis of β-galactosidase from the PDI2-lacZ fusion gene by SNP and nitrogen starvation appeared to be relatively reduced in the Pap1-negative TP108-3C cells than in the Pap1-positive KP1 cells. The PDI2 mRNA level was elevated by SNP and nitrogen starvation in the Pap1-positive cells but not in the Pap1-negative cells. In brief, the S. pombe PDI2 plays a protective role against nitrosative and nutritional stresses, and is positively regulated by NO and nitrogen starvation in a Pap1-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

ONPG:

ο-Nitrophenyl-β-d-galactopyranoside

PCR:

Polymerase chain reaction

PDI:

Protein disulfide isomerase

RT–PCR:

Reverse transcriptase-polymerase chain reaction

SNP:

Sodium nitroprusside

S. pombe :

Schizosaccharomyces pombe

References

  1. Gilbert HF (1997) Protein disulfide isomerase and assisted protein folding. J Biol Chem 272:29399–29402

    Article  CAS  PubMed  Google Scholar 

  2. Wilkins B, Gilbert HF (2004) Protein disulfide isomerase. Biochem Biophys Res Commun 1699:35–44

    Google Scholar 

  3. Tian G, Kober FX, Lewandrowski U, Sickmann A, Lennarz WJ, Schindelin H (2008) The catalytic activity of protein-disulfide isomerase requires a conformationally flexible molecule. J Biol Chem 283:33630–33640

    Article  CAS  PubMed  Google Scholar 

  4. Reinhardt C, von Brühl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, Dlugai S, Hess S, Konrad I, Orschiedt L, Mackman N, Ruddock L, Massberg S, Engelmann B (2008) Protein disulfide isomerase acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Investig 118:1110–1122

    CAS  PubMed  Google Scholar 

  5. Lu DP, Christopher DA (2008) Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol Genet Genomics 280:199–210

    Article  CAS  PubMed  Google Scholar 

  6. Zhang H, He J, Ji Y, Kato A, Song Y (2008) The effect of calnexin deletion on the expression level of PDI in Saccharomyces cerevisiae under heat stress conditions. Cell Mol Biol Lett 13:38–48

    Article  CAS  PubMed  Google Scholar 

  7. Updike MS, Sawdy JC, Wang LS, Liu S, Huang YW, Ye W, Farrar WB, Lin YC, Wick M (2007) Primary cultured human breast epithelial cell up-regulate protein disulfide isomerase in response to zeranol. Anticancer Res 27:407–410

    CAS  PubMed  Google Scholar 

  8. Tanaka S, Uehara T, Nomura Y (2000) Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 275:10388–10393

    Article  CAS  PubMed  Google Scholar 

  9. Sørensen BS, Horsman MR, Vorum H, Honoré B, Overgaard J, Alsner J (2009) Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics. Radiother Oncol 92:443–449

    Article  PubMed  Google Scholar 

  10. Saloheimo M, Lund M, Penttilä ME (1999) The protein disulfide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262:35–45

    Article  CAS  PubMed  Google Scholar 

  11. Jeenes DJ, Pfaller R, Archer DB (1997) Isolation and characterization of a novel stress-inducible PDI-family gene from Aspergillus niger. Gene 193:151–156

    Article  CAS  PubMed  Google Scholar 

  12. Goecke M, Gallant C, Suntharalingam P, Martin NL (2002) Salmonella typhimurium DsbA is growth-phase regulated. FEMS Microbiol Lett 206:229–234

    Article  CAS  PubMed  Google Scholar 

  13. Kim SJ, Choi YS, Kim HG, Park EH, Lim CJ (2006) Cloning, characterization and regulation of a protein disulfide isomerase from the fission yeast Schizosaccharomyces pombe. Mol Biol Rep 33:187–196

    Article  CAS  PubMed  Google Scholar 

  14. Myers AM, Tzagoloff A, Kinney DM, Lusty CJ (1986) Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310

    Article  CAS  PubMed  Google Scholar 

  15. Morjana NA, Gilbert HF (1991) Effect of protein and peptide inhibitors on the activity of protein disulfide isomerase. Biochemistry 30:4985–4990

    Article  CAS  PubMed  Google Scholar 

  16. Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191

    Article  CAS  PubMed  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Lee YY, Kim SJ, Park EH, Lim CJ (2003) Glutathione content and the activities of glutathione synthesizing enzymes in fission yeast are modulated by oxidative stress. J Microbiol 41:248–251

    CAS  Google Scholar 

  19. Nguyen AN, Lee A, Place W, Shiozaki K (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell 11:1169–1181

    CAS  PubMed  Google Scholar 

  20. Toone WM, Kuge S, Samuels M, Morgan BA, Toda T, Jones N (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev 12:1453–1463

    Article  CAS  PubMed  Google Scholar 

  21. Günther R, Brauer C, Janetzky B, Forster HH, Ehbrecht IM, Lehle L, Küntzel H (1991) The Saccharomyces cerevisiae TRG1 gene is essential for growth and encodes a lumenal endoplasmic reticulum glycoprotein involved in the maturation of vesicular carboxypeptidase. J Biol Chem 266:24557–24563

    PubMed  Google Scholar 

  22. Tachibana C, Stevens TH (1992) The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol 12:4601–4611

    CAS  PubMed  Google Scholar 

  23. Tachikawa H, Takeuchi Y, Funahashi W, Miura T, Gao XD, Fujimoto D, Mizunaga T, Onodera K (1995) Isolation and characterization of a yeast gene, MPD1, the overexpression of which suppresses inviability caused by protein disulfide isomerase depletion. FEBS Lett 369:212–216

    Article  CAS  PubMed  Google Scholar 

  24. Tachikawa H, Funahashi W, Takeuchi Y, Nakanishi H, Nishihara R, Katoh S, Gao XD, Mizunaga T, Fujimoto D (1997) Overproduction of Mpd2p suppresses the lethality of protein disulfide isomerase depletion in a CXXC sequence dependent manner. Biochem Biophys Res Commun 239:710–714

    Article  CAS  PubMed  Google Scholar 

  25. Liao M, Hatta T, Umemiya R, Huang P, Jia H, Gong H, Zhou J, Nishikawa Y, Xuan X, Fujisaki K (2007) Identification of three protein disulfide isomerase members from Haemaphysalis longicornis tick. Insect Biochem Mol Biol 37:641–654

    Article  CAS  PubMed  Google Scholar 

  26. Hong BX, Soong L (2008) Identification and enzymatic activities of four protein disulfide isomerase (PDI) isoforms of Leishmania amazonensis. Parasitol Res 102:437–446

    Article  CAS  PubMed  Google Scholar 

  27. Sarver A, DeRisi J (2005) Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell 16:4781–4791

    Article  CAS  PubMed  Google Scholar 

  28. Foster MW, Liu L, Zeng M, Hess DT, Stamler JS (2009) A genetic analysis of nitrosative stress. Biochemistry 48:792–799

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura T, Lipton SA (2007) Molecular mechanism of nitrosative stress-mediated protein misfolding in neurodegenerative diseases. Cell Mol Life Sci 64:1609–1620

    Article  CAS  PubMed  Google Scholar 

  30. Uehara T (2007) Accumulation of misfolded protein through nitrosative stress linked to neurodegenerative disorders. Antioxid Redox Signal 9:597–601

    Article  CAS  PubMed  Google Scholar 

  31. Niwa T (2007) Protein glutathionylation and oxidative stress. J Chromatogr 855:59–65

    Article  CAS  Google Scholar 

  32. Bell SE, Shah CM, Gordge MP (2007) Protein disulfide-isomerase mediates delivery of nitric oxide redox derivatives into platelets. Biochem J 403:283–288

    Article  CAS  PubMed  Google Scholar 

  33. Hromatka BS, Noble SM, Johnson AD (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826

    Article  CAS  PubMed  Google Scholar 

  34. Chiranand W, McLeod I, Zhou H, Lynn JJ, Vega LA, Myers H, Yates JR III, Lorenz MC, Gustin MC (2008) CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans. Eukaryot Cell 7:268–278

    Article  CAS  PubMed  Google Scholar 

  35. Kim SJ, Park EH, Lim CJ (2004) Stress-dependent regulation of the gene encoding γ-glutamyl cysteine synthetase from the fission yeast. Mol Biol Rep 31:23–30

    Article  CAS  PubMed  Google Scholar 

  36. Sahoo R, Dutta T, Das A, Ray SS, Sengupta R, Ghosh S (2006) Effect of nitrosative stress on Schizosaccharomyces pombe: inactivation of glutathione reductase by peroxinitrite. Free Radic Biol Med 40:625–631

    Article  CAS  PubMed  Google Scholar 

  37. Hiesinger M, Roth S, Meissner E, Schuller HJ (2001) Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon source-responsive elements. Curr Genet 39:68–76

    Article  CAS  PubMed  Google Scholar 

  38. Sajiki K, Hatanaka M, Nakamura T, Takeda K, Shimanuki M, Yoshida T, Hanyu Y, Hayashi T, Nakaseko Y, Yanagida M (2009) Genetic control of cellular quiescence in S. pombe. J Cell Sci 122:1418–1429

    Article  CAS  PubMed  Google Scholar 

  39. Khoda TA, Tanaka K, Konomi M, Sato M, Osumi M, Yamamoto M (2007) Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells 12:155–170

    Article  Google Scholar 

  40. Alfredsson-Timmins J, Kristell C, Henningson F, Lyckman S, Bjerling P (2009) Reorganization of chromatin is an early response to nitrogen starvation in Schizosaccharomyces pombe. Chromosoma 118:99–112

    Article  CAS  PubMed  Google Scholar 

  41. Yang W, Tabancay AP Jr, Urano J, Tamanoi F (2001) Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyl-transferase mutant. Mol Microbiol 41:1339–1347

    Article  CAS  PubMed  Google Scholar 

  42. Urano J, Comiso MJ, Guo L, Aspuria PJ, Denisken R, Tabancay AP Jr, Kato-Stankiewicz J, Tamanoi F (2005) Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58:1074–1086

    Article  CAS  PubMed  Google Scholar 

  43. Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M (2007) Opposite effects of Tor1 and Tor2 on nitrogen starvation responses in fission yeast. Genetics 175:1153–1162

    Article  CAS  PubMed  Google Scholar 

  44. Panepinto JC, Oliver BG, Amlung TW, Askew DS, Rhodes JC (2002) Expression of the Aspergillus fumigatus rheb homologue, rhebA, is induced by nitrogen starvation. Fungal Genet Biol 36:207–214

    Article  CAS  PubMed  Google Scholar 

  45. Kang KY, Park EH, Lim CJ (2008) Molecular cloning, characterization and regulation of a peroxiredoxin gene from Schizosaccharomyces pombe. Mol Biol Rep 35:387–395

    Article  CAS  PubMed  Google Scholar 

  46. Kim HG, Kim JH, Kim BC, Park EH, Lim CJ (2005) Carbon source-dependent regulation of a second gene encoding glutaredoxin from the fission yeast Schizosaccharomyces pombe. Mol Biol Rep 32:15–24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0072536). We wish to acknowledge Ms Hee Jin for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jin Lim.

Additional information

The sequence reported in this paper has been deposited in the GenBank database with the accession number GQ507432.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, EH., Hyun, DH., Park, EH. et al. A second protein disulfide isomerase plays a protective role against nitrosative and nutritional stresses in Schizosaccharomyces pombe . Mol Biol Rep 37, 3663–3671 (2010). https://doi.org/10.1007/s11033-010-0018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0018-1

Keywords

Navigation