Skip to main content
Log in

Supplementation of deprenyl attenuates age associated alterations in rat cerebellum

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aging, a multifactorial process of enormous complexity is characterised by physio-chemical and biological aspects of cellular functions. It is closely associated with changes in metabolism of various biological molecules in the system. In the present study, we have investigated the effect of deprenyl on cerebellum during ageing process in male Wistar rats with respect to the changes in levels of protein, glycoproteins and amino acids in experimental rats of three age groups (6, 12 and 18 months old). Intraperitoneal administration of liquid deprenyl (2 mg/kg body weight/day for a period of 15 days i.p., significantly P < 0.05) attenuated age-associated alterations in the levels of amino acids (taurine, aspartate, glutamate, arginine, hydroxy proline and homocysteine), protein content and glycoprotein components (hexose and hexosamine) in the rat cerebellum. The results of the present investigation indicate that the protective effect of deprenyl is probably related to its ability to strengthen the neuronal membrane by its membrane stabilizing action or to a counteraction of free radicals by its antioxidant property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Plate 1
Plate 2
Plate 3
Plate 4
Plate 5
Plate 6

Similar content being viewed by others

References

  1. Wei YH, Pang CY, Lee HC, Lu CY (1998) Roles of mitochondrial DNA mutation and oxidative damage in human aging. Curr Sci 74:887–893

    CAS  Google Scholar 

  2. Toescu EC, Myronova N, Verkhratsky A (2000) Age-related structural and functional changes of brain mitochondria. Cell Calcium 28:329–338

    Article  CAS  PubMed  Google Scholar 

  3. Kowald A (2002) Life span does not measure ageing. Biogerontology 3:187–190

    Article  PubMed  Google Scholar 

  4. Kirkwood TBL, Adams C, Gibbons L, Hewitt C (1996) Cell maintenance and stress response in ageing and longevity. In: Rattan S, Toussaint O (eds) Molecular gerontology: research status and strategies. Plenum, New York, pp 193–200

    Google Scholar 

  5. Bharath S, Anderson JK (2004) Catecholamine and protein deposition in Parkinson’s and Alzheimer’s disease: old medicine, new targets. Rejuvenation Res 7:92–94

    Article  CAS  PubMed  Google Scholar 

  6. Radak Z, Takahashi R, Kumiyama A, Nakamoto H, Ohno H, Ookawara T, Gono S (2002) Effect of aging and late onset dietary restriction on antioxidant enzymes and proteasome activities, and protein carbonylation of rat skeletal muscle and tendon. Exp Gerontol 37:1423–1430

    Article  CAS  PubMed  Google Scholar 

  7. Bowen J, Evangelista AM (2002) Brain cell damage from amino acid isolates: a primary concern from aspartame-based products and artificial sweetening agents—nutrasweet equal “sugar free” neotame. http://Wnho.net/aspartame_brain_damage.htm. Retrieved May 11, 2007

  8. James TJ, Sharma SP, Gupta SK, Patro IK (1992) ‘Dark’ cell formation under protein malnutrition: process of conversion and concept of ‘semi-dark’ type Purkinje cells. Indian J Exp Biol 30:470

    CAS  PubMed  Google Scholar 

  9. Vohra BPS, James TJ, Sharma SP, Kansal VK, Chudhary A, Gupta SK (2002) Dark neurons in the ageing cerebellum: their mode of formation and effect of Maharishi Amrit Kalash. Biogerontology 3:347–354

    Article  CAS  PubMed  Google Scholar 

  10. Knoll J, Dallo J, Yen TT (1989) Striatal dopamine, sexual activity and lifespan longevity of rats treated with (-) deprenyl. Life Sci 45:525–531

    Article  CAS  PubMed  Google Scholar 

  11. Magyar K, Palfi M, Tabi T, Kalasz H, Szende B, Szoko E (2004) Pharmacological aspects of (-)-deprenyl. Curr Med Chem 11:2017–2031

    CAS  PubMed  Google Scholar 

  12. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  CAS  PubMed  Google Scholar 

  13. Ishida Y, Fugita T, Asai K (1981) New detection and separation method for aminoacid by high performance liquid chromatography. J Chromatogr 204:143–148

    Article  CAS  PubMed  Google Scholar 

  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  15. Niebes P (1972) Determination of enzymes and degradation of the products of glycosylamino-glycan metabolism in healthy and various subjects. Clin Chim Acta 42:399–408

    Article  CAS  Google Scholar 

  16. Wagner WD (1979) More sensitive assay discriminating galactosamine and glycosamine in mixtures. Anal Biochem 94:394–396

    Article  CAS  PubMed  Google Scholar 

  17. Olive MF (2002) Interactions between taurine and ethanol in the central nervous system. Amino Acids 23:345–357

    Article  CAS  PubMed  Google Scholar 

  18. Albrecht J, Schousboe A (2005) Taurine interaction with neurotransmitter receptors in the CNS: An Update. Neurochem Res 30:1615–1621

    Article  CAS  PubMed  Google Scholar 

  19. Banay-Schwartz M, Lajtha A, Palkovits M (1989) Changes with aging in the levels of amino acids in rat CNS structural elements II. Taurine and small neutral amino acids. Neurochem Res 14:563–570

    Article  CAS  PubMed  Google Scholar 

  20. El Idrissi A (2008) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328

    Article  CAS  PubMed  Google Scholar 

  21. Philip EC, Matthew TG, Phillip JS, Alexander RJ, Hongjie Y, Amanda LJ, James PS, Stephen FT, David JAW (2005) Structural features of the glutamate binding site in recombinant NR1/NR2A N-Methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol Pharmacol 67:1470–1484

    Article  Google Scholar 

  22. Song D, O’Regan MH, Phillis JW (1996) Release of the excitotoxic amino acids, glutamate and aspartate, from the isolated ischemic/anoxic rat heart. Neurosci Lett 220:1–4

    Article  CAS  PubMed  Google Scholar 

  23. De Marchi U, Pietrangeli P, Mondovi B, Toninello A (2003) Deprenyl as an inhibitor of menadione-induced permeability transition in liver mitochondria. Biochem Pharmacol 66:1749–1754

    Article  PubMed  Google Scholar 

  24. Svetlana MM, Simo SO, Pirjo S (2006) Taurine attenuates d-[3H] aspartate release evoked by depolarization in ischemic corticostriatal slices. Brain Res 1099:64–72

    Article  Google Scholar 

  25. Kuiper MA, Visser JJ, Bergmans PL, Scheltens P, Wolters EC (1994) Decreased cerebrospinal fluid nitrate levels in Parkinson’s disease, Alzheimer’s disease and multiple system atrophy patients. J Neurol Sci 121:46–49

    Article  CAS  PubMed  Google Scholar 

  26. Mollace V, Rodino P, Massoud R, Rotiroti D, Nistico G (1995) Age-dependent changes of NO synthase activity in the rat brain. Biochem Biophys Res Commun 215:3822–3827

    Google Scholar 

  27. Eva S, Esther M-L, Ana C, Marta S, Raquel H, Juan CL-R, Maria LDM, Francisco JE, Santos B, Juan AP, Jose R, Maria AP (2002) Age-related changes of the nitric oxide system in the rat brain. Brain Res 956:385–392

    Article  Google Scholar 

  28. Dominique L, Mehrnaz J-T, Gaelle L, Bruno P, Dominique B-R, Michel P, Isabelle M (2005) Lack of iNOS induction in a severe model of transient focal cerebral ischemia in rats. Exp Neurol 195:218–228

    Article  Google Scholar 

  29. Thomas T, McLendon C, Thomas G (1998) l-Deprenyl: nitric oxide production and dilation of cerebral blood vessels [Ageing]. Neuroreport 9:2595–2600

    Article  CAS  PubMed  Google Scholar 

  30. Arstall MA, Sawyer DB, Fukazawa R, Kelly RA (1999) Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 85:829–840

    CAS  PubMed  Google Scholar 

  31. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN (2007) Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem 127:1–8

    Article  CAS  PubMed  Google Scholar 

  32. Kalaria RN, Pax AB (1995) Increased collagen content of cerebral microvessels in Alzheimer’s disease. Brain Res 705:349–352

    Article  CAS  PubMed  Google Scholar 

  33. Czerniczyniec A, Bustamante J, Lores-Arnaiz S (2007) Improvement of mouse brain mitochondrial function after deprenyl treatment. Neuroscience 144:685–693

    Article  CAS  PubMed  Google Scholar 

  34. Tatton WG, Ju WYL, Holland DP, Tai C, Kwan M (2002) Deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 63:1572–1575

    Article  Google Scholar 

  35. Tatton WG, Chalmers-Redman RM, Ju WJ, Mammen M, Carlile GW, Pong AW, Tatton NA (2002) Propargylamines induce antiapoptotic new protein synthesis in serum- and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301:753–764

    Article  CAS  PubMed  Google Scholar 

  36. Toshifumi M, Miyako N, Masahiro M, Takefumi Y, Hiroshi Y, Haruko T, Mari O, Naoki T, Sachio M, Susumu H, Yo-ichi Y, Takashi S, Koh I, Katsutoshi F, Hiroyuki A (2005) Plasma homocysteine and risk of coexisting silent brain infarction in Alzheimer’s disease. Neurodegener Dis 2:299–304

    Google Scholar 

  37. den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MMB (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126:170–175

    Article  Google Scholar 

  38. Picerno I, Chirico C, Condello S, Visalli G, Ferlazzo N, Gorgone G, Caccamo D, Ientile R (2006) Homocysteine induces DNA damage and alterations in proliferative capacity of T-lymphocytes: a model for immunosenescence? Biogerontology 8:111–119

    Article  PubMed  Google Scholar 

  39. Thakur MK, Prasad S (1991) Analysis of age-associated alteration in the synthesis of HMG nonhistone proteins of the rat liver. Mol Biol Rep 15(1):19–24

    Article  CAS  PubMed  Google Scholar 

  40. Bardag-Gorce F, Farout L, Veyrat-Durebex C, Briand Y, Briand M (1999) Changes in 20S proteasome activity during ageing of the LOU rat. Mol Biol Rep 26(1–2):89–93

    Article  CAS  PubMed  Google Scholar 

  41. Supakar PC, Kanungo MS (1984) Conformational changes in the chromatin of the brain of developing rats and its modulation by zinc chloride. Mol Biol Rep 9(4):253–257

    Article  CAS  PubMed  Google Scholar 

  42. Das BR, Kanungo MS (1986) Developmental changes in the chromatin of the brain of the rat: analysis by nick-translation. Mol Biol Rep 11(4):195–197

    Article  CAS  PubMed  Google Scholar 

  43. Conconi M, Friguet B (1997) Proteasome inactivation upon aging and on oxidation-effect of HSP 90. Mol Biol Rep 24(1–2):45–50

    Article  CAS  PubMed  Google Scholar 

  44. Pathak RU, Kanungo MS (2007) Subtractive differential display: a modified differential display technique for isolating differentially expressed genes. Mol Biol Rep 34(1):41–46

    Article  CAS  PubMed  Google Scholar 

  45. Chaurasia P, Thakur MK (1998) Nucleosome positioning and periodicity of satellite DNA in the liver of aging rats. Nucleosome positioning and periodicity of satellite DNA. Mol Biol Rep 25(1):63–69

    Article  CAS  PubMed  Google Scholar 

  46. Mattson MPG (2003) Diet interactions in brain aging and neurodegenerative disorders. Ann Med Sci 139:441–444

    CAS  Google Scholar 

  47. Ward WF (2000) The relentless effects of the aging process on protein turnover. Biogerontology 1:195–199

    Article  CAS  PubMed  Google Scholar 

  48. Carrard G, Bulteau AL, Petropoulos I, Friguet B (2002) Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 34:1461–1474

    Article  CAS  PubMed  Google Scholar 

  49. Chondrogianni N, Fragoulis EG, Gonos S (2002) Protein degradation during aging: the lysosome-, the calpain- and the proteasome-dependent cellular proteolytic systems. Biogerontology 3:121–123

    Article  CAS  PubMed  Google Scholar 

  50. Hipkiss AR (2006) Accumulation of altered proteins and aging: causes and effects. Exp Gerontol 41:464–473

    Article  CAS  PubMed  Google Scholar 

  51. Tatton WG (1996) Deprenyl reduce neuronal apoptosis and facilitates neuronal outgrowth by altering protein synthesis without inhibiting monoamine oxidase. J Neural Transm Suppl 48:45–59

    CAS  PubMed  Google Scholar 

  52. Altman J, Bayer SA (1997) Development of the cerebellar system. CRC Press, New York

    Google Scholar 

  53. Patro N, Gupta P, Patro IK (2002) Lipofuscin in cell ageing and cell death. J Gerontol 16:45–68

    Google Scholar 

  54. Sturrock RR (1989) Age related changes in Purkinje cell number in the cerebellar nodulus of the mouse. J Hirnforsch 30:757–760

    CAS  PubMed  Google Scholar 

  55. Amenta F, Bongrani S, Cadel S, Ferrante F, Valsecchi B, Zeng YC (1994) Influence of treatment with deprenyl on the structure of the cerebellar cortex of aged rats. Mech Ageing Dev 75:157–167

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju V. Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, M.V., James, T.J. Supplementation of deprenyl attenuates age associated alterations in rat cerebellum. Mol Biol Rep 37, 3653–3661 (2010). https://doi.org/10.1007/s11033-010-0017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0017-2

Keywords

Navigation