Skip to main content

Advertisement

Log in

Identification of a novel vimentin promoter and mRNA isoform

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The intermediate filament protein vimentin is involved in a variety of cellular functions both during the normal developmental processes and in human malignancies. We here describe the identification of an alternative vimentin transcript initiating upstream for the canonical vimentin gene promoter and spliced using the vimentin promoter sequence as an intron. Expression analysis showed that the alternative vimentin promoter had the same expression profile as the canonical vimentin gene promoter. The presented data suggest that alternative promoter usage and alternative splicing could be regulatory mechanisms participating in vimentin gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parry DA, Steinert PM (1999) Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Q Rev Biophys 32(2):99–187

    Article  CAS  PubMed  Google Scholar 

  2. Herrmann H, Aebi U (2004) Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 73:749–789

    Article  CAS  PubMed  Google Scholar 

  3. Ivaska J et al (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313(10):2050–2062

    Article  CAS  PubMed  Google Scholar 

  4. Wang N, Stamenovic D (2002) Mechanics of vimentin intermediate filaments. J Muscle Res Cell Motil 23(5–6):535–540

    Article  PubMed  Google Scholar 

  5. Duprey P, Paulin D (1995) What can be learned from intermediate filament gene regulation in the mouse embryo. Int J Dev Biol 39(3):443–457

    CAS  PubMed  Google Scholar 

  6. Kokkinos MI et al (2007) Vimentin and epithelial-mesenchymal transition in human breast cancer–observations in vitro and in vivo. Cells Tissues Organs 185(1–3):191–203

    Article  CAS  PubMed  Google Scholar 

  7. Rittling SR, Baserga R (1987) Functional analysis and growth factor regulation of the human vimentin promoter. Mol Cell Biol 7(11):3908–3915

    CAS  PubMed  Google Scholar 

  8. Benazzouz A, Duprey P (1999) The vimentin promoter as a tool to analyze the early events of retinoic acid-induced differentiation of cultured embryonal carcinoma cells. Differentiation 65(3):171–180

    Article  CAS  PubMed  Google Scholar 

  9. Evans RM (1998) Vimentin: the conundrum of the intermediate filament gene family. Bioessays 20(1):79–86

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X et al (2009) Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 8(3):499–508

    Article  CAS  PubMed  Google Scholar 

  11. Hendrix MJ et al (1997) Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol 150(2):483–495

    CAS  PubMed  Google Scholar 

  12. Gilles C (1999) Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 112(Pt 24):4615–4625

    CAS  PubMed  Google Scholar 

  13. Perreau J et al (1988) Nucleotide sequence of the human vimentin gene and regulation of its transcription in tissues and cultured cells. Gene 62(1):7–16

    Article  CAS  PubMed  Google Scholar 

  14. Pieper FR et al (1992) Regulation of vimentin expression in cultured epithelial cells. Eur J Biochem 210(2):509–519

    Article  CAS  PubMed  Google Scholar 

  15. Izmailova ES et al (1999) A GC-box is required for expression of the human vimentin gene. Gene 235(1–2):69–75

    Article  CAS  PubMed  Google Scholar 

  16. Sax CM et al (1988) Multiple elements are required for expression of an intermediate filament gene. Nucleic Acids Res 16(16):8057–8076

    Article  CAS  PubMed  Google Scholar 

  17. Kryszke MH, Vicart P (1998) Regulation of the expression of the human vimentin gene: application to cellular immortalization. Pathol Biol (Paris) 46(1):39–45

    CAS  Google Scholar 

  18. Moura-Neto V et al (1996) A 28-bp negative element with multiple factor-binding activity controls expression of the vimentin-encoding gene. Gene 168(2):261–266

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y et al (2007) The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells 12(8):905–918

    Article  CAS  PubMed  Google Scholar 

  20. Izmailova ES, Zehner ZE (1999) An antisilencer element is involved in the transcriptional regulation of the human vimentin gene. Gene 230(1):111–120

    Article  CAS  PubMed  Google Scholar 

  21. Wu Y et al (2004) Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89. Oncogene 23(1):168–178

    Article  CAS  PubMed  Google Scholar 

  22. Condorelli DF et al (1999) GFAPbeta mRNA expression in the normal rat brain and after neuronal injury. Neurochem Res 24(5):709–714

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen AL et al (2002) A new splice variant of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem 277(33):29983–29991

    Article  CAS  PubMed  Google Scholar 

  24. Blechingberg J et al (2007) Regulatory mechanisms for 3′-end alternative splicing and polyadenylation of the glial fibrillary acidic protein, GFAP, transcript. Nucleic Acids Res 35(22):7636–7650

    Article  CAS  PubMed  Google Scholar 

  25. Condorelli DF et al (1999) Structural features of the rat GFAP gene and identification of a novel alternative transcript. J Neurosci Res 56(3):219–228

    Article  CAS  PubMed  Google Scholar 

  26. Hol EM et al (2003) Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 8(9):786–796

    Article  CAS  PubMed  Google Scholar 

  27. Aparicio O et al. (2005) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Mol Biol. Chapter 21: p. Unit 21 3

  28. Kragh PM et al. (2009) Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 18:545–558

    Google Scholar 

  29. Yamamichi-Nishina M et al (2003) SW13 cells can transition between two distinct subtypes by switching expression of BRG1 and Brm genes at the post-transcriptional level. J Biol Chem 278(9):7422–7430

    Article  CAS  PubMed  Google Scholar 

  30. Hedberg KK, Chen LB (1986) Absence of intermediate filaments in a human adrenal cortex carcinoma-derived cell line. Exp Cell Res 163(2):509–517

    Article  CAS  PubMed  Google Scholar 

  31. Butler R, Robertson J, Gallo JM (2000) Mutually exclusive expression of beta(III)-tubulin and vimentin in adrenal cortex carcinoma SW13 cells. FEBS Lett 470(2):198–202

    Article  CAS  PubMed  Google Scholar 

  32. Sarria AJ (1994) The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW-13 cells. J Cell Sci 107(Pt 6):1593–1607

    CAS  PubMed  Google Scholar 

  33. Sommers CL et al (1994) Regulation of vimentin gene transcription in human breast cancer cell lines. Cell Growth Differ 5(8):839–846

    CAS  PubMed  Google Scholar 

  34. Stover DM et al (1994) A negative regulatory factor is missing in a human metastatic breast cancer cell line. Cancer Res 54(12):3092–3095

    CAS  PubMed  Google Scholar 

  35. Carninci P et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635

    Article  CAS  PubMed  Google Scholar 

  36. Heintzman ND et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318

    Article  CAS  PubMed  Google Scholar 

  37. Mikkelsen TS et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Article  CAS  PubMed  Google Scholar 

  38. Guenther MG et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88

    Article  CAS  PubMed  Google Scholar 

  39. Kimura K et al (2006) Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 16(1):55–65

    Article  CAS  PubMed  Google Scholar 

  40. Kim TH et al (2005) A high-resolution map of active promoters in the human genome. Nature 436(7052):876–880

    Article  CAS  PubMed  Google Scholar 

  41. Martianov I et al (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445(7128):666–670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by funding from The Danish Cancer Society, The Danish Medical Research Foundation, Fonden til Lægevidenskabens Fremme, Christinan X′s Foundation, The Lundbeck Foundation, and The NovoNordisk Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lade Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Kahns, S. & Nielsen, A.L. Identification of a novel vimentin promoter and mRNA isoform. Mol Biol Rep 37, 2407–2413 (2010). https://doi.org/10.1007/s11033-009-9751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9751-8

Keywords

Navigation