Skip to main content
Log in

Human initiation protein Orc4 prefers triple stranded DNA

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In higher eukaryotes mechanism of DNA replication origin recognition and binding by origin recognition complex (ORC) is still unknown. Origin transfer studies have shown that origin sites are genetically determined, containing functionally interchangeable modules. One of such modules from the human lamin B2 origin of replication has the ability to adopt unorthodox structure partly composed of intramolecular triplex. Sequences involved in triplex formation coincide with ORC binding sites both in vitro and in vivo. To explore potential significance of unorthodox DNA structures in origin recognition by ORC, we tested DNA binding properties of human ORC subunit 4 (HsOrc4) which has independent DNA binding activity in vitro and similar binding characteristics as ORC holocomplex. Our results demonstrated that DNA binding activity of HsOrc4 depends on length and structure of DNA with triplex being the protein’s preferred binding target. Such feature could play part in origin selection through directing ORC to DNA sequence prone to adopt unorthodox structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mendez J, Stillman B (2003) Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 25:1158–1167

    Article  CAS  PubMed  Google Scholar 

  2. Chesnokov IN (2007) Multiple functions of the origin recognition complex. Int Rev Cytol 256:69–109

    Article  CAS  PubMed  Google Scholar 

  3. Sasaki T, Gilbert DM (2007) The many faces of the origin recognition complex. Curr Opin Cell Biol 19:337–343

    Article  CAS  PubMed  Google Scholar 

  4. Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134

    Article  CAS  PubMed  Google Scholar 

  5. Bell SP (2002) The origin recognition complex: from simple origins to complex functions. Genes Dev 16:659–672

    Article  CAS  PubMed  Google Scholar 

  6. DePamphilis ML (2005) Cell cycle dependent regulation of the origin recognition complex. Cell Cycle 4:70–79

    CAS  PubMed  Google Scholar 

  7. Rowley A, Cocker JH, Harwood J, Diffley JF (1995) Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. EMBO J 14:2631–2641

    CAS  PubMed  Google Scholar 

  8. Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17:1894–1908

    Article  CAS  PubMed  Google Scholar 

  9. Remus D, Beall EL, Botchan MR (2004) DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 23:897–907

    Article  CAS  PubMed  Google Scholar 

  10. Stanojcic S, Lemaitre JM, Brodolin K, Danis E, Mechali M (2008) In Xenopus egg extracts, DNA replication initiates preferentially at or near asymmetric AT sequences. Mol Cell Biol 28:5265–5274

    Article  CAS  PubMed  Google Scholar 

  11. Danis E, Brodolin K, Menut S, Maiorano D, Girard-Reydet C, Mechali M (2004) Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6:721–730

    Article  CAS  PubMed  Google Scholar 

  12. Falaschi A, Abdurashidova G, Sandoval O, Radulescu S, Biamonti G, Riva S (2007) Molecular and structural transactions at human DNA replication origins. Cell Cycle 6:1705–1712

    CAS  PubMed  Google Scholar 

  13. Kearsey SE, Cotterill S (2003) Enigmatic variations: divergent modes of regulating eukaryotic DNA replication. Mol Cell 12:1067–1075

    Article  CAS  PubMed  Google Scholar 

  14. Aladjem MI, Fanning E (2004) The replicon revisited: an old model learns new tricks in metazoan chromosomes. EMBO Rep 5:686–691

    Article  CAS  PubMed  Google Scholar 

  15. Bianchi A, Wells RD, Heintz NH, Caddle MS (1990) Sequences near the origin of replication of the DHFR locus of Chinese hamster ovary cells adopt left-handed Z-DNA and triplex structures. J Biol Chem 265:21789–21796

    CAS  PubMed  Google Scholar 

  16. Kusic J, Kojic S, Divac A, Stefanovic D (2005) Noncanonical DNA elements in the lamin B2 origin of DNA replication. J Biol Chem 280:9848–9854

    Article  CAS  PubMed  Google Scholar 

  17. Paixao S, Colaluca IN, Cubells M, Peverali FA, Destro A, Giadrossi S, Giacca M, Falaschi A, Riva S, Biamonti G (2004) Modular structure of the human lamin B2 replicator. Mol Cell Biol 24:2958–2967

    Article  CAS  PubMed  Google Scholar 

  18. Abdurashidova G, Danailov MB, Ochem A, Triolo G, Djeliova V, Radulescu S, Vindigni A, Riva S, Falaschi A (2003) Localization of proteins bound to a replication origin of human DNA along the cell cycle. EMBO J 22:4294–4303

    Article  CAS  PubMed  Google Scholar 

  19. Stefanovic D, Stanojcic S, Vindigni A, Ochem A, Falaschi A (2003) In vitro protein-DNA interactions at the human lamin B2 replication origin. J Biol Chem 278:42737–42743

    Article  CAS  PubMed  Google Scholar 

  20. Stefanovic D, Kusic J, Divac A, Tomic B (2008) Formation of noncanonical DNA structures mediated by human ORC4, a protein component of the origin recognition complex. Biochemistry 47:8760–8767

    Article  CAS  PubMed  Google Scholar 

  21. Kiyama R, Camerini-Otero RD (1991) A triplex DNA-binding protein from human cells: purification and characterization. Proc Natl Acad Sci U S A 88:10450–10454

    Article  CAS  PubMed  Google Scholar 

  22. Agazie YM, Burkholder GD, Lee JS (1996) Triplex DNA in the nucleus: direct binding of triplex-specific antibodies and their effect on transcription, replication and cell growth. Biochem J 316(Pt 2):461–466

    CAS  PubMed  Google Scholar 

  23. Gaudier M, Schuwirth BS, Westcott SL, Wigley DB (2007) Structural basis of DNA replication origin recognition by an ORC protein. Science 317:1213–1216

    Article  CAS  PubMed  Google Scholar 

  24. Dueber EL, Corn JE, Bell SD, Berger JM (2007) Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex. Science 317:1210–1213

    Article  CAS  PubMed  Google Scholar 

  25. Houchens CR, Lu W, Chuang RY, Frattini MG, Fuller A, Simancek P, Kelly TJ (2008) Multiple mechanisms contribute to Schizosaccharomyces pombe origin recognition complex-DNA interactions. J Biol Chem 283:30216–30224

    Article  CAS  PubMed  Google Scholar 

  26. Abdurashidova G, Radulescu S, Sandoval O, Zahariev S, Danailov MB, Demidovich A, Santamaria L, Biamonti G, Riva S, Falaschi A (2007) Functional interactions of DNA topoisomerases with a human replication origin. EMBO J 26:998–1009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Dragana Stefanovic for many helpful suggestions and critical reading of the manuscript. This work was supported by grants from Ministry of Science and Technological Development, Serbia (143051) and International Centre for Genetic Engineering and Biotechnology, Italy (CRP/YUG08-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kusic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusic, J., Tomic, B., Divac, A. et al. Human initiation protein Orc4 prefers triple stranded DNA. Mol Biol Rep 37, 2317–2322 (2010). https://doi.org/10.1007/s11033-009-9735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9735-8

Keywords

Navigation