Skip to main content
Log in

Molecular characterization, expression profile and association analysis with carcass traits of porcine LCAT gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The lecithin cholesterol acyltransferase gene (LCAT) plays an important role in lipoprotein metabolism, especially in the process termed ‘reverse cholesterol transport’. In this study, we obtained the 1,434 bp mRNA sequence of porcine LCAT including the full coding region and encoding a protein of 472 amino acids. The sequence was deposited into the GenBank under the accession no. EU717835. The genomic sequence of this gene which contains six exons and five introns, is 3,712 bp in length (GQ379050). Bioinformatic analysis of the 5′ regulatory region has revealed that some transcription factor Sp1, AP-1, AP-2 and NF-kappaB were represented in this region. Tissue expression analysis showed that the porcine LCAT gene is ubiquitously expressed in all examined tissues. Phylogenetic tree was constructed by aligning the amino acid sequences of different species. Moreover, we found a single nucleotide polymorphism (SNP, C/G266) in intron 1 of the LCAT gene and association analysis showed that it was significantly associated with ratio of lean to fat (P < 0.05), caul fat weight (P < 0.01), leaf fat weight (P < 0.05), carcass length (P < 0.05) and bone percentage (P < 0.05). Our study will lay the groundwork for the further investigations on the detailed physiological function of LCAT in pig models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glomset JA (1962) The mechanism of the plasma cholesterol esterificationreaction: plasma fatty acid transferase. Biochim Biophys Acta 65:128–135

    Article  CAS  PubMed  Google Scholar 

  2. Jonas A (2000) Lecithin cholesterol acyltransferase. Biochim Biophys Acta 1529:245–256

    CAS  PubMed  Google Scholar 

  3. Kinoshita M, Teramoto T (2001) LCAT (lecithin:cholesterol acyltransferase). Rinsho Byori Suppl 116:125–130

    CAS  Google Scholar 

  4. McLean J, Fielding C, Drayna D, Dieplinger H, Baer B, Kohr W, Henzel W, Lawn R (1986) Cloning and expression of human lecithin-cholesterol acyltransferase cDNA. Proc Natl Acad Sci USA 83:2335–2339

    Article  CAS  PubMed  Google Scholar 

  5. Azoulay M, Henry I, Tata F, Weil D, Grzeschik KH, Chaves ME, McIntyre N, Williamson R, Humphries SE, Junien C (1987) The structural gene for lecithin:cholesterol acyl transferase (LCAT) maps to 16q22. Ann Hum Genet 51:129–136

    Article  CAS  PubMed  Google Scholar 

  6. Scherer G, Bausch E, Gaa A, von Deimling O (1989) Gene mapping on mouse chromosome 8 by interspecific crosses: new data on a linkage group conserved on human chromosome 16q. Genomics 5:275–282

    Article  CAS  PubMed  Google Scholar 

  7. Frengen E, Thomsen PD, Brede G, Solheim J, de Jong PJ, Prydz H (1997) The gene cluster containing the LCAT gene is conserved between human and pig. Cytogenet Cell Genet 76:53–57

    Article  CAS  PubMed  Google Scholar 

  8. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  9. Zuo B, Xiong YZ, Deng CY, Su YH, Wang J, Lei MG, Li FE, Jiang SW, Zheng R (2005) Polymorphism, linkage mapping and expression pattern of the porcine skeletal muscle glycogen synthase (GYS1) gene. Anim Genet 36:254–257

    Article  CAS  PubMed  Google Scholar 

  10. Xiong YZ, Deng CY (1999) Principle and method of swine testing. Chinese Agricultural Press, Beijing

    Google Scholar 

  11. Liu BH (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, LLC, New York, pp 404–409

    Google Scholar 

  12. Breathnach R, Benoist C, O’Hare K, Gannon F, Chambon P (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon−intron boundaries. Proc Natl Acad Sci USA 75:4853–4857

    Article  CAS  PubMed  Google Scholar 

  13. McLean J, Wion K, Drayna D, Fielding C, Lawn R (1986) Human lecithin-cholesterol acyltransferase gene: complete gene sequence and sites of expression. Nucleic Acids Res 14:9397–9406

    Article  CAS  PubMed  Google Scholar 

  14. Meroni G, Malgaretti N, Pontoglio M, Ottolenghi S, Taramelli R (1991) Functional analysis of the human lecithin cholesterol acyl transferase gene promoter. Biochem Biophys Res Commun 180(3):1469–1475

    Article  CAS  PubMed  Google Scholar 

  15. Wu J, Deng CY, Xiong YZ, Zhou DH, Lei MG, Zuo B, Li FE, Wang J (2006) cDNA cloning and polymorphism of the porcine carbonic anhydrase III (CA3) gene. Asian Aust J Anim Sci 19:324–328

    CAS  Google Scholar 

  16. Fielding CJ, Fielding PE (1995) Molecular physiology of reverse cholesterol transport. J Lipid Res 36:211–228

    CAS  PubMed  Google Scholar 

  17. Glomset JA (1968) The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res 9:155–167

    CAS  PubMed  Google Scholar 

  18. von Eckardstein A, Nofer JR, Assmann G (2001) High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27

    Google Scholar 

  19. Kuivenhoven JA, Pritchard H, Hill J, Frohlich J, Assmann G, Kastelein J (1997) The molecular pathology of lecithin: cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 38:191–205

    CAS  PubMed  Google Scholar 

  20. Ng DS, Francone OL, Forte TM, Zhang J, Haghpassand M, Rubin EM (1997) Disruption of the murine lecithin: cholesterol acyltransferase gene causes impairment of adrenal lipid delivery and up-regulation of scavenger receptor class B type I. J Biol Chem 272:15777–15781

    Article  CAS  PubMed  Google Scholar 

  21. Sakai N, Vaisman BL, Koch CA, Hoyt RF, Meyn SM, Talley GD, Paiz JA, Brewer HB, Santamarina-Fojo S (1997) Targeted disruption of the mouse lecithin: cholesterol acyltransferase (LCAT) gene. Generation of a new animal model for human LCAT deficiency. J Biol Chem 272:7506–7510

    Article  CAS  PubMed  Google Scholar 

  22. Mehlum A, Staels B, Duverger N, Tailleux A, Castro G, Fievet C, Luc G, Fruchart JC, Olivecrona G, Skretting G, Auwerx J, Prydz H (1995) Tissue-specific expression of the human gene for lecithin: cholesterol acyltransferase in transgenic mice alters blood lipids, lipoproteins and lipases towards a less atherogenic profile. Eur J Biochem 230:567–575

    Article  CAS  PubMed  Google Scholar 

  23. Francone OL, Gong EL, Ng DS, Fielding CJ, Rubin EM (1995) Expression of human lecithin-cholesterol acyltransferase in transgenic mice. Effect of human apolipoprotein AI and human apolipoprotein all on plasma lipoprotein cholesterol metabolism. J Clin Invest 96:1440–1448

    Article  CAS  PubMed  Google Scholar 

  24. Francone OL, Haghpassand M, Bennett JA, Royer L, McNeish J (1997) Expression of human lecithin: cholesterol acyltransferase in transgenic mice: effects on cholesterol efflux, esterification, and transport. J Lipid Res 38:813–822

    CAS  PubMed  Google Scholar 

  25. Hoeg JM, Santamarina-Fojo S, Berard AM, Cornhill JF, Herderick EE, Feldman SH, Haudenschild CC, Vaisman BL, Hoyt RF Jr, Demosky SJ Jr, Kauffman RD, Hazel CM, Marcovina SM, Brewer HB Jr (1996) Overexpression of lecithin: cholesterol acyltransferase in transgenic rabbits prevents dietinduced atherosclerosis. Proc Natl Acad Sci USA 93:11448–11453

    Article  CAS  PubMed  Google Scholar 

  26. Guidoni A, Benkouka F, De Caro J, Rovery M (1981) Characterization of the serine reacting with diethyl p-nitrophenyl phosphate in porcine pancreatic lipase. Biochim Biophys Acta 660(1):148–150

    CAS  PubMed  Google Scholar 

  27. Docherty AJP, Bodmer MW, Angal S, Verger R, Rivière C, Lowe PA, Lyons A, Emtage JS, Harris TJR (1985) Molecular cloning and nucleotide sequence of rat lingual lipase cDNA. Nucleic Acids Res 13:1891–1903

    Article  CAS  PubMed  Google Scholar 

  28. Feister HA, Auerbach BJ, Cole LA, Krause BR (2002) Identification of an IL-6 response element in the human LCAT promoter. J Lipid Res 43:960–970

    CAS  PubMed  Google Scholar 

  29. Hoppe KL, Francone OL (1998) Binding and functional effects of transcription factors Sp1 and Sp3 on the proximal human lecithin: cholesterol acyltransferase promoter. J Lipid Res 39:969–977

    CAS  PubMed  Google Scholar 

  30. Saffer JD, Jackson SP, Annarella MB (1991) Developmental expression of Sp1 in the mouse. Mol Cell Biol 11:2189–2199

    CAS  PubMed  Google Scholar 

  31. Persengiev SP, Raval PJ, Rabinovitch S, Millette CF, Kilpatrick DL (1996) Transcription factor Sp1 is expressed by three different developmentally regulated messenger ribonucleic acids in mouse spermatogenic cells. Endocrinology 137:638–646

    Article  CAS  PubMed  Google Scholar 

  32. Warden CH, Langner CA, Gordon JI, Taylor BA, McLean JW, Lusis AJ (1989) Tissue-specific expression, developmental regulation, and chromosomal mapping of the lecithin:cholesterol acyltransferase gene: evidence for expression in brain and testes as well as liver. J Biol Chem 264:21573–21581

    CAS  PubMed  Google Scholar 

  33. Hengstschlager-Ottnad E, Kuchler K, Schneider WJ (1995) Chicken lecithin: cholesterol acyltransferase: molecular characterization reveals unusual structure and expression pattern. J Biol Chem 270:26139–26145

    Article  CAS  PubMed  Google Scholar 

  34. Minie ME, Kimura T, Felsenfeld G (1992) The developmental switch in embryonic rho-globin expression is correlated with erythroid lineage-specific differences in transcription factor levels. Development 115:1149–1164

    CAS  PubMed  Google Scholar 

  35. Merchant JL, Shiotani A, Mortensen ER, Shumaker DK, Abraczinskas DR (1995) Epidermal growth factor stimulation of the human gastrin promoter requires Sp1. J Biol Chem 270:6314–6319

    Article  CAS  PubMed  Google Scholar 

  36. Wilkie PJ, Paszek AA, Beattie CW, Alexander LJ, Wheeler MB, Schook LB (1999) A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea. Mamm Genome 10:573–578

    Article  CAS  PubMed  Google Scholar 

  37. Cassady JP, Johnson RK, Pomp D, Rohrer GA, Van Vleck LD, Spiegel EK, Gilson KM (2001) Identification of quantitative trait loci affecting reproduction in pigs. J Anim Sci 79:623–633

    CAS  PubMed  Google Scholar 

  38. de Koning DJ, Janss LLG, Rattink AP, van Oers PA, de Vries BJ, Groenen MA, van der Poel JJ, de Groot PN, Brascamp EW, van Arendonk JA (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152:1679–1690

    PubMed  Google Scholar 

  39. Ovilo C, Perez-Enciso M, Barragan C et al (2000) A QTL for intramuscularfat and backfat thickness is located on porcine chromosome 6. Mamm Genome 11:344–346

    Article  CAS  PubMed  Google Scholar 

  40. Grindflek E, Szyda J, Liu Z, Lien S (2001) Detection of quantitativetrait loci for meat quality in a commercial slaughter pigcross. Mamm Genome 12:299–304

    Article  CAS  PubMed  Google Scholar 

  41. Mohrmann M, Roehe R, Knap PW, Looft H, Plastow GS, Kalm E (2006) Quantitative trait loci associated with AutoFOM grading characteristics, carcass cuts and chemical body composition during growth of Sus scrofa. Anim Genet 37(5):435–443

    Article  CAS  PubMed  Google Scholar 

  42. Sutherland WH, Temple WA, Nye ER, Herbison PG (1979) Lecithin: cholesterol acyltransferase activity, plasma and lipoprotein lipids and obesityin men and women. Atherosclerosis 34:319–327

    Article  CAS  PubMed  Google Scholar 

  43. Balasubramaniyan V, Nalini N (2006) Intraperitoneal leptin regulates lipidmetabolism in ethanol supplemented Mus musculas heart. Life Sci 78:831–837

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the National “863” project of P. R. China (2007AA10Z166), National High Technology Development Project (2006BAD01A08-01), National “973” Program of P. R. China (2006CB102102), and Hubei Province Key Project of Science and Technology (2006AA202A01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yan Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, M., Wu, HY., Li, FE. et al. Molecular characterization, expression profile and association analysis with carcass traits of porcine LCAT gene. Mol Biol Rep 37, 2227–2234 (2010). https://doi.org/10.1007/s11033-009-9709-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9709-x

Keywords

Navigation