Skip to main content

Advertisement

Log in

Znrg, a novel gene expressed mainly in the developing notochord of zebrafish

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The notochord, a defining characteristic of the chordate embryo is a critical midline structure required for axial skeletal formation in vertebrates, and acts as a signaling center throughout embryonic development. We utilized the digital differential display program of the National Center for Biotechnology Information, and identified a contig of expressed sequence tags (no. Dr. 83747) from the zebrafish ovary library in Genbank. Full-length cDNA of the identified gene was cloned by 5′- and 3′- RACE, and the resulting sequence was confirmed by polymerase chain reaction and sequencing. The cDNA clone contains 2,505 base pairs and encodes a novel protein of 707 amino acids that shares no significant homology with any known proteins. This gene was expressed in mature oocytes and at the one-cell stage, and persisted until the 5th day of development, as determined by RT-PCR. Transcripts were detected by whole-mount RNA in situ hybridization from the two-cell stage to 72 h of embryonic development. This gene was uniformly distributed from the cleavage stage up to the blastula stage. During early gastrulation, it was present in the dorsal region, and became restricted to the notochord and pectoral fin at 48 and 72 h of embryonic development. Based on its abundance in the notochord, we hypothesized that the novel gene may play an important role in notochord development in zebrafish; we named this gene, zebrafish notochord-related gene, or znrg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fleming A, Keynes R, Tannahill D (2004) A central role for the notochord in vertebral patterning. Development 131:873–880

    Article  CAS  PubMed  Google Scholar 

  2. Hogan B et al (1994) Early mouse development. In: Manipulating the mouse embryo, Cold Spring Harbor Laboratory Press, NY, pp 63–81

  3. Scott A, Stemple DL (2005) Zebrafish notochordal basement membrane: signaling and structure. Curr Top Dev Biol 65:229–253

    Article  CAS  PubMed  Google Scholar 

  4. Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol (Berl) 208:333–350

    Google Scholar 

  5. Cleaver O, Krieg PA (2001) Notochord patterning of the endoderm. Dev Biol 234:1–12

    Article  CAS  PubMed  Google Scholar 

  6. Fouquet B et al (1997) Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev Biol 183:37–48

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein AM, Fishman MC (1998) Notochord regulates cardiac lineage in zebrafish embryos. Dev Biol 201:247–252

    Article  CAS  PubMed  Google Scholar 

  8. Stemple DL (2005) Structure and function of the notochord: an essential organ for chordate development. Development 132:2503–2512

    Article  CAS  PubMed  Google Scholar 

  9. Barresi MJ, Stickney HL, Devoto SH (2000) The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development 127:2189–2199

    CAS  PubMed  Google Scholar 

  10. Cleaver O, Seufert DW, Krieg PA (2000) Endoderm patterning by the notochord: development of the hypochord in Xenopus. Development 127:869–879

    CAS  PubMed  Google Scholar 

  11. Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17:5718–5733

    Article  CAS  PubMed  Google Scholar 

  12. Ng LJ et al (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183:108–121

    Article  CAS  PubMed  Google Scholar 

  13. Schulte-Merker S et al (1994) no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120:1009–1015

    CAS  PubMed  Google Scholar 

  14. Talbot WS et al (1995) A homeobox gene essential for zebrafish notochord development. Nature 378:150–157

    Article  CAS  PubMed  Google Scholar 

  15. Parsons MJ et al (2002) Zebrafish mutants identify an essential role for laminins in notochord formation. Development 129:3137–3146

    CAS  PubMed  Google Scholar 

  16. Pagnon-Minot A et al (2008) Collagen XV, a novel factor in zebrafish notochord differentiation and muscle development. Dev Biol 316:21–35

    Article  CAS  PubMed  Google Scholar 

  17. Pollard SM et al (2006) Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation. Dev Biol 289:64–76

    Article  CAS  PubMed  Google Scholar 

  18. Westerfield M (1995) The zebrafish book. Eugene Press

  19. Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  20. Selman K et al (1993) Stages of oocyte development in the zebrafish, Brachydanio rerio. J Morphol 218:203–224

    Article  Google Scholar 

  21. Dijkman HBPM et al (1995) RNA in situ hybridization using digoxigenin-labeled cRNA probes. Biochemica 2:21–25

    Google Scholar 

  22. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69

    Article  CAS  PubMed  Google Scholar 

  23. Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  CAS  PubMed  Google Scholar 

  24. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis–a look outside the nucleus. Science 287:1606–1609

    Article  CAS  PubMed  Google Scholar 

  25. Topol L et al (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162:899–908

    Article  CAS  PubMed  Google Scholar 

  26. Farr GH 3rd et al (2000) Interaction among GSK-3, GBP, axin, and APC in Xenopus axis specification. J Cell Biol 148:691–702

    Article  CAS  PubMed  Google Scholar 

  27. Nasevicius A et al (1998) Evidence for a frizzled-mediated wnt pathway required for zebrafish dorsal mesoderm formation. Development 125:4283–4292

    CAS  PubMed  Google Scholar 

  28. Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456

    CAS  PubMed  Google Scholar 

  29. Heasman J (1997) Patterning the Xenopus blastula. Development 124:4179–4191

    CAS  PubMed  Google Scholar 

  30. Nishida H (2002) Patterning the marginal zone of early ascidian embryos: localized maternal mRNA and inductive interactions. Bioessays 24:613–624

    Article  CAS  PubMed  Google Scholar 

  31. Pelegri F (2003) Maternal factors in zebrafish development. Dev Dyn 228:535–554

    Article  CAS  PubMed  Google Scholar 

  32. Wagner DS et al (2004) Maternal control of development at the midblastula transition and beyond: mutants from the zebrafish II. Dev Cell 6:781–790

    Article  CAS  PubMed  Google Scholar 

  33. Amacher SL et al (2002) The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 129:3311–3323

    CAS  PubMed  Google Scholar 

  34. Gansner JM, Gitlin JD (2008) Essential role for the alpha 1 chain of type VIII collagen in zebrafish notochord formation. Dev Dyn 237:3715–3726

    Article  CAS  PubMed  Google Scholar 

  35. Gansner JM et al (2007) Essential role of lysyl oxidases in notochord development. Dev Biol 307:202–213

    Article  CAS  PubMed  Google Scholar 

  36. Hawkins TA et al (2008) The small molecule Mek1/2 inhibitor U0126 disrupts the chordamesoderm to notochord transition in zebrafish. BMC Dev Biol 8:42

    Article  PubMed  Google Scholar 

  37. Krens SF et al (2006) Characterization and expression patterns of the MAPK family in zebrafish. Gene Expr Patterns 6:1019–1026

    Article  CAS  PubMed  Google Scholar 

  38. Dietz UH et al (1999) Spatio-temporal distribution of chondromodulin-I mRNA in the chicken embryo: expression during cartilage development and formation of the heart and eye. Dev Dyn 216:233–243

    Article  CAS  PubMed  Google Scholar 

  39. Domowicz M et al (1995) The biochemically and immunologically distinct CSPG of notochord is a product of the aggrecan gene. Dev Biol 171:655–664

    Article  CAS  PubMed  Google Scholar 

  40. Sachdev SW et al (2001) Sequence analysis of zebrafish chondromodulin-1 and expression profile in the notochord and chondrogenic regions during cartilage morphogenesis. Mech Dev 105:157–162

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Q et al (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209:377–386

    Article  CAS  PubMed  Google Scholar 

  42. Schlombs K, Wagner T, Scheel J (2003) Site-1 protease is required for cartilage development in zebrafish. Proc Natl Acad Sci USA 100:14024–14029

    Article  CAS  PubMed  Google Scholar 

  43. Holley SA, Nusslein-Volhard C (2000) Somitogenesis in zebrafish. Curr Top Dev Biol 47:247–277

    Article  CAS  PubMed  Google Scholar 

  44. Fleming A, Keynes RJ, Tannahill D (2001) The role of the notochord in vertebral column formation. J Anat 199:177–180

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 30871407), the “Chinese 111 project” (Grant no. B06018) and the “863 Program” (Grant no. 2007AA06Z407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengjiao Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Xu, Y., Li, J. et al. Znrg, a novel gene expressed mainly in the developing notochord of zebrafish. Mol Biol Rep 37, 2199–2205 (2010). https://doi.org/10.1007/s11033-009-9702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9702-4

Keywords

Navigation