Skip to main content
Log in

Toll-like receptor 9 agonists up-regulates the expression of cyclooxygenase-2 via activation of NF-κB in prostate cancer cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

CpG-oligonucleotides (CpG-ODNs), mimicking bacterial DNA, have recently been shown to stimulate prostate cancer invasion in vitro via Toll-like receptor 9 (TLR9). Since cyclooxygenase 2 (COX-2), frequently overexpressed in multiple tumor types including prostate cancer, is a causal factor for tumor development, invasion and metastasis, an interesting question is raised whether TLR9 regulates COX-2 expression in prostate cancer cells. To address this question, herein we examined COX-2 expression in PC-3 cells stimulated with different doses and time courses of CpG-ODNs. The regulatory role of NF-κB in TLR9-mediated COX-2 expression was also investigated. CpG-ODN was found to up-regulate the expression of COX-2 in PC-3 cells in a dose- and time-dependent manner, but have little impact on COX-1 expression. Moreover, CpG-ODN also promoted nuclear translocation and activation of NF-κB, which appeared to be required for COX-2 induction by CpG-ODN. Overall, TLR9 up-regulates COX-2 expression in prostate cancer cells, at least partially through the activation of NF-κB, which may be implicated in tumor invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vaidya SA, Cheng G (2003) Toll-like receptors and innate antiviral responses. Curr Opin Immunol 15:402–407. doi:10.1016/S0952-7915(03)00070-0

    Article  CAS  PubMed  Google Scholar 

  2. Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95. doi:10.1016/S0165-2478(02)00228-6

    Article  CAS  PubMed  Google Scholar 

  3. Wagner H (2004) The immunobiology of the TLR9 subfamily. Trends Immunol 25:381–386. doi:10.1016/j.it.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  4. Chen R, Alvero AB, Silasi DA et al (2008) Cancers take their Toll–the function and regulation of Toll-like receptors in cancer cells. Oncogene 27:225–233. doi:10.1038/sj.onc.1210907

    Article  CAS  PubMed  Google Scholar 

  5. Huang B, Zhao J, Unkeless JC et al (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27:218–224. doi:10.1038/sj.onc.1210904

    Article  CAS  PubMed  Google Scholar 

  6. Salaun B, Coste I, Rissoan MC et al (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176:4894–4901

    CAS  PubMed  Google Scholar 

  7. Kelly MG, Alvero AB, Chen R et al (2006) TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 66:3859–3868. doi:10.1158/0008-5472.CAN-05-3948

    Article  CAS  PubMed  Google Scholar 

  8. Huang B, Zhao J, Li H et al (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014. doi:10.1158/0008-5472.CAN-05-0784

    Article  CAS  PubMed  Google Scholar 

  9. Merrell MA, Ilvesaro JM, Lehtonen N et al (2006) Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 4:437–447. doi:10.1158/1541-7786.MCR-06-0007

    Article  CAS  PubMed  Google Scholar 

  10. Andaloussi AE, Sonabend AM, Han Y et al (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54:526–535. doi:10.1002/glia.20401

    Article  PubMed  Google Scholar 

  11. Droemann D, Albrecht D, Gerdes J et al (2005) Human Lung cancer cells express functionally active Toll-like receptor 9. Respir Res 6:1. doi:10.1186/1465-9921-6-1

    Article  PubMed  Google Scholar 

  12. Schmausser B, Andulis M, Endrich S et al (2005) Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cell: an implication for interaction with helicobacter pylori. Int J Med Microbiol 295:179–185. doi:10.1016/j.ijmm.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  13. Kundu SD, Lee C, Billips BK et al (2008) The toll-like receptor pathway: a novel mechanism of infection-induced carcinogenesis of prostate epithelial cells. Prostate 68:223–229. doi:10.1002/pros.20710

    Article  CAS  PubMed  Google Scholar 

  14. Ilvesaro JM, Merrell MA, Swain TM et al (2007) Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 67:774–781. doi:10.1002/pros.20562

    Article  CAS  PubMed  Google Scholar 

  15. Jain S, Chakraborty G, Raja R et al (2008) Prostaglandin E2 regulates tumorangiogenesis in prostate cancer. Cancer Res 68:7750–7759. doi:10.1158/0008-5472.CAN-07-6689

    Article  CAS  PubMed  Google Scholar 

  16. Attiga FA, Fernandez PM, Weeraratna AT et al (2000) Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 60:4629–4637

    CAS  PubMed  Google Scholar 

  17. Nithipatikom K, Isbell MA, Lindholm PF et al (2002) Requirement of cyclooxygenase-2 expression and prostaglandins for human prostate cancer cell invasion. Clin Exp Metastasis 19:593–601. doi:10.1023/A:1020915914376

    Article  CAS  PubMed  Google Scholar 

  18. Pan MR, Hou MF, Chang HC et al (2008) Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J Biol Chem 283:11155–11163. doi:10.1074/jbc.M710038200

    Article  CAS  PubMed  Google Scholar 

  19. Gee J, Lee IL, Grossman HB et al (2008) Forced COX-2 expression induces PGE(2) and invasion in immortalized urothelial cells. Urol Oncol 26:641–645. doi:10.1016/j.urolonc.2007.05.015

    CAS  PubMed  Google Scholar 

  20. Sansone P, Piazzi G, Paterini P, et al (2008) Cyclooxygenase-2/Carbonic anhydrase-IX up-regulation promotes invasive potential and hypoxia survival in colorectal cancer cells. J Cell Mol Med. doi:10.1111/j.1582-4934.2008.00580.x

  21. Lee EJ, Choi EM, Kim SR et al (2007) Cyclooxygenase-2 promotes cell proliferation, migration and invasion in U2OS human osteosarcoma cells. Exp Mol Med 39:469–476

    CAS  PubMed  Google Scholar 

  22. N’Guessan PD, Hippenstiel S, Etouem MO et al (2006) Streptococcus pneumoniae induced p38 MAPK- and NF-kappaB-dependent COX-2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol 290:L1131–L1138. doi:10.1152/ajplung.00383.2005

    Article  PubMed  Google Scholar 

  23. Ikezoe T, Yang Y, Saitoh T et al (2006) PC-SPES down-regulates COX-2 via inhibition of NF-kappaB and C/EBPbeta in non-small cell lung cancer cells. Int J Oncol 29:453–461

    CAS  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Bernard MP, Phipps RP (2007) CpG oligodeoxynucleotides induce cyclooxygenase-2 in human B lymphocytes: implications for adjuvant activity and antibody production. Clin Immunol 125:138–148. doi:10.1016/j.clim.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  26. Song PI, Park Y-M, Abraham T et al (2002) Human keratinocytes express functional CD14 and toll-like receptor 4. J Invest Dermatol 119:424–432. doi:10.1046/j.1523-1747.2002.01847.x

    Article  CAS  PubMed  Google Scholar 

  27. Wu ZH, Miyamoto S (2007) Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med 85:1187–1202. doi:10.1007/s00109-007-0227-9

    Article  CAS  PubMed  Google Scholar 

  28. Cuzzocrea S, Chatterjee PK, Mazzon E et al (2002) Pyrrolidine dithiocarbamate attenuates the development of acute and chronic inflammation. Br J Pharmacol 135:496–510. doi:10.1038/sj.bjp.0704463

    Article  CAS  PubMed  Google Scholar 

  29. Nurmi A, Vartiainen N, Pihlaja R et al (2004) Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa-B in neurons and protects against brain ischaemia with a wide therapeutic time window. J Neurochem 91:755–765. doi:10.1111/j.1471-4159.2004.02756.x

    Article  CAS  PubMed  Google Scholar 

  30. He W, Liu Q, Wang L et al (2007) TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol 44:2850–2859. doi:10.1016/j.molimm.2007.01.022

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki R, Yamamoto M, Saka H et al (2009) A phase II study of carboplatin and paclitacel with meloxicam. Lung Cancer 63:72–76. doi:10.1016/j.lungcan.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  32. Mustafa A, Kruger WD (2008) Suppression of tumor formation by a cyclooxygenase-2 inhibitor and a peroxisome proliferator-activated receptor gamma agonist in an in vivo mouse model of spontaneous breast cancer. Clin Cancer Res 14:4935–4942. doi:10.1158/1078-0432.CCR-08-0958

    Article  CAS  PubMed  Google Scholar 

  33. Naugler WE, Karin M (2008) NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26. doi:10.1016/j.gde.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  34. Zha S, Yegnasubramanian V, Nelson WG et al (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215:1–20. doi:10.1016/j.canlet.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  35. Matsumoto M, Funami K, Tanabe M et al (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171:3154–3162

    CAS  PubMed  Google Scholar 

  36. Heil F, Ahmad-Nejad P, Hemmi H et al (2003) The toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987–2997. doi:10.1002/eji.200324238

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di, J.M., Pang, J., Sun, Q.P. et al. Toll-like receptor 9 agonists up-regulates the expression of cyclooxygenase-2 via activation of NF-κB in prostate cancer cells. Mol Biol Rep 37, 1849–1855 (2010). https://doi.org/10.1007/s11033-009-9620-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9620-5

Keywords

Navigation