Skip to main content
Log in

Expression and purification of recombinant arginine decarboxylase (speA) from Escherichia coli

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The crystal structures of almost all the enzymes of arginine metabolism have been determined, but arginine decarboxylase’s structure is not resolved yet. In order to characterize and crystallize arginine decarboxylase, we overexpressed biosynthetic arginine decarboxylase (ADC; EC 4.1.1.19, encoded by the speA gene) from Escherichia coli in the T7 expression system as a cleavable poly-His-tagged fusion construct. The expressed recombinant His10-ADC (77.3 kDa) was first purified by Ni–NTA affinity chromatography, then proteolytically digested with Tobacco Etch Virus (TEV) protease to remove the poly-His fusion tag, and finally purified by anion exchange chromatography. The His10 tag removed recombinant ADC (74.1 kDa)’s typical yield was 90 mg from 1 l of culture medium with purity above 98%. The recombinant ADC was assayed for decarboxylase activity, showing decarboxylase activity of 2.8 U/mg, similar to the purified native E. coli ADC. The decarboxylase activity assay also showed that the purified recombinant ADC tolerated broad ranges of pH (pH 6–9) and temperature (20–80°C). Our research may facilitate further studies of ADC structure and function, including the determination of its crystal structure by X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

BCA:

Bicinchoninic acid

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

IPTG:

Isopropyl β-D-thiogalactopyranoside

Ni-NTA:

Nickel-nitrilotriacetic acid

PLP:

Pyridoxal phosphate

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TEV protease:

Tobacco Etch Virus protease

References

  1. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  Google Scholar 

  2. Coleman CS, Hu G, Pegg AE (2004) Putrescine biosynthesis in mammalian tissues. Biochem J 379:849–855

    Article  CAS  PubMed  Google Scholar 

  3. Zhu MY, Iyo A, Piletz JE et al (2004) Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim Biophys Acta 1670:156–164

    CAS  PubMed  Google Scholar 

  4. Feng Y, Halaris AE, Piletz JE (1997) Determination of agmatine in brain and plasma using high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 691:277–286

    Article  CAS  PubMed  Google Scholar 

  5. Reis DJ, Regunathan S (1998) Agmatine: a novel neurotransmitter? Adv Pharmacol 42:645–649

    Article  CAS  PubMed  Google Scholar 

  6. Regunathan S, Youngson C, Raasch W et al (1996) Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferation. J Pharmacol Exp Ther 276:1272–1282

    CAS  PubMed  Google Scholar 

  7. Satriano J, Matsufuji S, Murakami Y et al (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273:15313–15316

    Article  CAS  PubMed  Google Scholar 

  8. Regunathan S, Feinstein DL, Reis DJ (1999) Anti-proliferative and anti-inflammatory actions of imidazoline agents. Are imidazoline receptors involved? Ann N Y Acad Sci 881:410–419

    Article  CAS  PubMed  Google Scholar 

  9. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  Google Scholar 

  10. Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564

    Article  CAS  PubMed  Google Scholar 

  11. Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol. Cell 5:607–616

    Article  CAS  PubMed  Google Scholar 

  12. Tabor H, Tabor CW (1969) Formation of 1, 4-diaminobutane and of spermidine by an ornithine auxotroph of Escherichia coli grown on limiting ornithine or arginine. J Biol Chem 244:2286–2292

    CAS  PubMed  Google Scholar 

  13. Bartley TD, Quan TJ, Collins MT et al (1982) Membrane-filter technique for the isolation of Yersinia enterocolitica. Appl Environ Microbiol 43:829–834

    CAS  PubMed  Google Scholar 

  14. Morris DR, Boeker EA (1983) Biosynthetic and biodegradative ornithine and arginine decarboxylases from Escherichia coli. Methods Enzymol 94:125–134

    Article  CAS  PubMed  Google Scholar 

  15. Bell E, Malmberg RL (1990) Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet 224:431–436

    Article  CAS  PubMed  Google Scholar 

  16. Wu WH, Morris DR (1973) Biosynthetic arginine decarboxylase from Escherichia coli: purification and properties. J Biol Chem 248:1687–1695

    CAS  PubMed  Google Scholar 

  17. Morris DR, Fillingame RH (1974) Regulation of amino acid decarboxylation. Annu Rev Biochem 43:303–325

    Article  CAS  PubMed  Google Scholar 

  18. Buch JK, Boyle SM (1985) Biosynthetic arginine decarboxylase in Escherichia coli is synthesized as a precursor and located in the cell envelope. J Bacteriol 163:522–527

    CAS  PubMed  Google Scholar 

  19. Tabor H, Tabor CW (1969) Partial separation of two pools of arginine in Escherichia coli; preferential use of exogenous rather than endogenous arginine for the biosynthesis of 1, 4-diaminobutane. J Biol Chem 244:6383–6387

    CAS  PubMed  Google Scholar 

  20. Wright JM, Boyle SM (1982) Negative control of ornithine decarboxylase and arginine decarboxylase by adenosine-3′:5′-cyclic monophosphate in Escherichia coli. Mol Gen Genet 186:482–487

    Article  CAS  PubMed  Google Scholar 

  21. Nam KH, Lee SH, Lee J (1997) Differential expression of ADC mRNA during development and upon acid stress in soybean (Glycine max) hypocotyls. Plant Cell Physiol 38:1156–1166

    CAS  PubMed  Google Scholar 

  22. Chang KS, Lee SH, Hwang SB et al (2000) Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.). Plant J 24:45–56

    Article  CAS  PubMed  Google Scholar 

  23. Hanfrey C, Sommer S, Mayer MJ et al (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  CAS  PubMed  Google Scholar 

  24. Ramakrishna S, Adiga PR (1975) Arginine decarboxylase from Lathyrus sativus seedlings. Purification and properties. Eur J Biochem 59:377–386

    Article  CAS  PubMed  Google Scholar 

  25. Smith TA (1979) Arginine decarboxylase of oat seedlings. Phytochemistry 18:1447–1452

    Article  CAS  Google Scholar 

  26. Vicente C, Legaz E (1981) Purification and properties of l-arginine decarboxylase of Evernia prunastri. Plant Cell Physiol 22:1119–1123

    CAS  Google Scholar 

  27. Choudhuri MM, Ghosh B (1982) Purification and partial characterization of arginine decarboxylase from rice embryos (Oryza sativa L.). Agric. Biol. Chem 46:739–743

    CAS  Google Scholar 

  28. Winer L, Vinkler C, Apelbaum A (1984) Partial-purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme. Plant Physiol 76:233–237

    Article  CAS  PubMed  Google Scholar 

  29. Prasad GL, Adiga PR (1985) Purification and characterization of arginine decarboxylase from cucumber (cucumis sativus) seedlings. J Biosci 7:331–343

    Article  CAS  Google Scholar 

  30. Reggiani R (1994) Purification and synthesis under anaerobic conditions of rice arginine decarboxylase. Plant Cell Physiol 35:1245–1249

    CAS  Google Scholar 

  31. Das S, Bhaduri TJ, Bose A et al (1996) Purification and partial characterization of arginine decarboxylase from Brassica campestris. J Plant Biochem Biotechnol 5:123–126

    CAS  Google Scholar 

  32. Ha BH, Cho KJ, Choi YJ et al (2004) Characterization of arginine decarboxylase from Dianthus caryophyllus. Plant Physiol Biochem 42:307–311

    Article  CAS  PubMed  Google Scholar 

  33. Ding Y, Jiang W, Su Y et al (2004) Expression and purification of recombinant cytoplasmic domain of human erythrocyte band 3 with hexahistidine tag or chitin-binding tag in Escherichia coli. Protein Expr Purif 34:167–175

    Article  CAS  PubMed  Google Scholar 

  34. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  35. van den Berg S, Lofdahl PA, Hard T et al (2006) Improved solubility of TEV protease by directed evolution. J Biotechnol 121:291–298

    Article  PubMed  Google Scholar 

  36. Goldschmidt MC, Lockhart BM (1971) Simplified rapid procedure for determination of agmatine and other guanidino-containing compounds. Anal Chem 43:1475–1479

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We especially thank Professor Zhihong Zhang for the critical reviews, additions, and useful suggestions on this manuscript drafts. The work was supported by the grants (No. 30600107, 30500113 and 30670499) from the National Natural Science Foundation of China and Shanghai Leading Academic Discipline Project (Project number B111). Rui Liu, Xudong Wu and Di Wu were supported by the National Talent Training Fund in Basic Research of China (No. J0630643) and Xi Yuan Scholar Program (2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Zhou, C., Liu, R. et al. Expression and purification of recombinant arginine decarboxylase (speA) from Escherichia coli . Mol Biol Rep 37, 1823–1829 (2010). https://doi.org/10.1007/s11033-009-9617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9617-0

Keywords

Navigation