Skip to main content

Advertisement

Log in

Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Proteinuria is a well-established exacerbating factor in chronic kidney disease. Although the mechanisms of albumin-induced tubulointerstitial damage have been extensively studied, the influence of mycophenolic acid (MPA) on tubular epithelial cells has not been sufficiently elucidated. MPA, the active metabolite of mycophenolate mofetil, is a potent, non-competitive, and reversible inhibitor of inosine-5′-monophosphate dehydrogenase, the rate-limiting enzyme for de novo purine synthesis. Monocyte chemoattractant protein 1 (MCP-1) is a 76-amino-acid chemokine thought to be the major chemotactic factor for monocytes. MCP-1 is found in macrophage-rich areas of atherosclerotic lesions. However, the mechanisms regulating MCP-1 expression by MPA in renal tubular epithelial cells were still unclear. In this study, the inhibitory effect of MPA on MCP-1 expression by albumin-induced renal tubular epithelial cells was investigated, and the roles of p38 mitogen-activated protein kinase (p38 MAPK) pathway were explored. MPA attenuated albumin-induced expression of MCP-1 mRNA and protein. The experiment suggested that MPA actively inhibited protein of MCP-1. The inhibitory effect of MPA on MCP-1 expression was mediated by the sequential attenuation of p38 MAPK expression. These inhibitory effects were partially inhibited by SB203580, a specific inhibitor of p38 MAPK. Taken together, these results suggest that the negative modulation of MCP-1 by MPA is partly dependent on p38 MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson S (1996) Mechanisms of injury in progressive renal disease. Exp Nephrol 4:34–40

    CAS  PubMed  Google Scholar 

  2. Eddy AA (2004) Proteinuria and interstitial injury. Nephrol Dial Transplant 19:277–281

    Article  PubMed  Google Scholar 

  3. Ramaswamy D, Alex LP, Paul CN, Nigel JB, Mark ECD (2007) The role played by endocytosis in albumin-induced secretion of TGF-β1 by proximal tubular epithelial cells. Am J Physiol Renal Physiol 292:F1464–F1470

    Article  Google Scholar 

  4. Allison AC, Eugui EM (2000) Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 47:85–118

    Article  CAS  PubMed  Google Scholar 

  5. Badid C, Vincent M, McGregor B, Melin M, Hadj-Aissa A, Veysseyre C, Hartmann DJ, Desmouliere A, Laville M (2000) Mycophenolate mofetil reduces myofibro-blast infiltration and collagen III deposition in rat remnant kidney. Kidney Int 58:51–61

    Article  CAS  PubMed  Google Scholar 

  6. Dubus I, Vendrely B, Christophe I, Labouyrie JP, Delmas Y, Bonnet J, Combe C (2002) Mycophenolic acid antagonizes the activation of cultured human mesangial cells. Kidney Int 62:857–867

    Article  CAS  PubMed  Google Scholar 

  7. Danoff TM (1998) Chemokines in interstitial injury. Kidney Int 53:1807–1808

    Article  CAS  PubMed  Google Scholar 

  8. Segerer S, Nelson PJ, Schlöndorff D (2000) Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11:152–176

    CAS  PubMed  Google Scholar 

  9. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  10. Murali NS, Ackerman AW, Croatt AJ, Cheng J, Grande JP, Sutor SL, Bram RJ, Bren GD, Badley AD, Alam J, Nath KA (2007) Renal upregulation of HO-1 reduces albumin-driven MCP-1 production: implications for chronic kidney disease. Am J Physiol Renal Physiol 292:F837–F844

    Article  CAS  PubMed  Google Scholar 

  11. Zhang SL, Tang S, Chen X, Filep JG, Ingelfinger JR, Chan JS (2000) High levels of glucose stimulate angiotensinogen gene expression via the p38 mitogen-activated protein kinase pathway in rat kidney proximal tubular cells. Endocrinology 141:4637–4646

    Article  CAS  PubMed  Google Scholar 

  12. Bohle A, Müller GA, Wehrmann M, Mackensen-Haen S, Xiao JC (1996) Pathogenesis of chronic renal failure in the primary glomerulopathies, renal vasculopathies, and chronic interstitial nephritides. Kidney Int Suppl 54:S2–S9

    CAS  PubMed  Google Scholar 

  13. Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339:1448–1456

    Article  CAS  PubMed  Google Scholar 

  14. Dixon R, Brunskill NJ (1999) Activation of mitogenic pathways by albumin in kidney proximal tubule epithelial cells: implications for the pathophysiology of proteinuric states. J Am Soc Nephrol 10:1487–1497

    CAS  PubMed  Google Scholar 

  15. Tang S (2001) Transferrin but not albumin mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells. Am J Kidney Dis 37:94–103

    Article  CAS  PubMed  Google Scholar 

  16. Gross ML, Hanke W, Koch A, Ziebart H, Amann K, Ritz E (2002) Intraperitoneal protein injection in the axolotl: the amphibian kidney as a novel model to study tubulointerstitial activation. Kidney Int 62:51–59

    Article  CAS  PubMed  Google Scholar 

  17. Benigni A, Corna D, Zoja C, Longaretti L, Gagliardini E, Perico N, Coffman TM, Remuzzi G (2004) Targeted deletion of angiotensin II type 1 A receptor does not protect mice from progressive nephropathy of overload proteinuria. J Am Soc Nephrol 15:2666–2674

    Article  CAS  PubMed  Google Scholar 

  18. Heeman U, Azuma H, Schmid C, Phillips T, Tilney N (1996) Effects of mycophenolic acid mofetil on acute rejection of kidney allografts in rats. Clin Nephrol 45:355–357

    Google Scholar 

  19. Baer PC, Gauer S, Hauser IA, Scherberich JA, Geiger H (2000) Effects of mycophenolic acid on human renal proximal and distal tubular cells in vitro. Nephrol Dial Transplant 15:184–190

    Article  CAS  PubMed  Google Scholar 

  20. Rovin BH, Phan LT (1998) Chemotactic factors and renal inflammation. Am J Kidney Dis 31:1065–1084

    Article  CAS  PubMed  Google Scholar 

  21. Paterson D, Lan H, Atkins R (2001) How renal cytokines and growth factors contribute to renal disease progression. Am J Kidney Dis 37:S21–S24

    Article  Google Scholar 

  22. Diamond JR, Kees-Folts D, Ding G, Frye JE, Restrepo NC (1994) Macrophages, monocyte chemoattractant peptide-1, and TGF-beta 1 in experimental hydronephrosis. Am J Physiol 266:F926–F933

    CAS  PubMed  Google Scholar 

  23. Tesch GH, Schwarting A, Kinoshita K, Lan HY, Rollins BJ, Kelley VR (1999) Monocyte chemoattractant protein-1 promotes macrophage mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J Clin Invest 103:73–80

    Article  CAS  PubMed  Google Scholar 

  24. Cuschieri J, Maier RV (2005) Mitogen-activated protein kinase (MAPK). Crit Care Med 33:S417–S419

    Article  PubMed  Google Scholar 

  25. Masaki T, Foti R, Hill PA, Ikezumi Y, Atkins RC, Nikolic-Paterson DJ (2003) Activation of the ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int 63:1256–1264

    Article  CAS  PubMed  Google Scholar 

  26. Peng H, Takano T, Papillon J, Bijian K, Khadir A, Cybulsky AV (2002) Complement activates the c-Jun N-terminal kinase/stress-activated protein kinase in glomerular epithelial cells. J Immunol 169:2594–2601

    CAS  PubMed  Google Scholar 

  27. Stambe C, Atkins RC, Tesch GH, Kapoun AM, Hill PA, Schreiner GF, Nikolic-Paterson DJ (2003) Blockade of p38 MAPK ameliorates acute inflammatory renal injury in rat anti-GBM glomerulonephritis. J Am Soc Nephrol 14:338–351

    Article  CAS  PubMed  Google Scholar 

  28. Wada T, Furuichi K, Sakai N, Hisada Y, Kobayashi K, Mukaida N, Tomosugi N, Matsushima K, Yokoyama H (2001) Involvement of p38 mitogen-activated protein kinase followed by chemokine expression in crescentic glomerulonephritis. Am J Kidney Dis 38:1169–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Shui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shui, H., Gao, P., Si, X. et al. Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway. Mol Biol Rep 37, 1749–1754 (2010). https://doi.org/10.1007/s11033-009-9599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9599-y

Keywords

Navigation