Skip to main content
Log in

Expression of biologically active recombinant antifreeze protein His-MpAFP149 from the desert beetle (Microdera punctipennis dzungarica) in Escherichia coli

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An insect antifreeze protein gene Mpafp149 was cloned by the RT-PCR approach from the desert beetle Microdera punctipennis dzungarica. Sequence analysis revealed that this gene encoding a protein of 120 amid acids and this protein showed 65–76% homology with other insect antifreeze proteins, the deduced amino acid sequence displays very high similarities in those regions that contain tandem the 12-residue repeats (TCTxSxxCxxAx) domain and the TCT motif. Mpafp149 gene was cloned into pET-28a vector and expressed in Escherichia coli. A single-step purification based on specific binding of histidine residues was achieved. The purified His-MpAFP149 was SDS–PAGE analyzed, showing an atypical migration with molecular weight of about 24 kDa. The expression of His-MpAFP149 was confirmed by Western blot with specific binding to anti-GST-MpAFP149 antibody. The thermal hysteresis activity of the purified recombinant protein was 0.915°C at 0.09 mg/ml, and the supercooling point was −9.6°C at 0.03 mg/ml. In vitro antifreeze activity assay by measuring the survival rate of bacteria at −7 and −20°C respectively, with the protection of His-MpAFP149 showed that the His-MpAFP149 fusion protein was able to enhance the freeze resistance of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Daley ME, Spyracopoulos L, Jia Z, Davies PL, Sykes BD (2002) Structure and dynamics of a beta-helical antifreeze protein. Biochemistry 41:5515–5525. doi:10.1021/bi0121252

    Article  CAS  PubMed  Google Scholar 

  2. Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans R Soc Lond B Biol Sci 357:927–935. doi:10.1098/rstb.2002.1081

    Article  CAS  PubMed  Google Scholar 

  3. Duman JG, Serianni AS (2001) The role of endogenous antifreeze protein enhancers in the hemolymph thermal hysteresis activity of the beetle Dendroides canadensis. J Insect Physiol 48:103–111. doi:10.1016/S0022-1910(01)00150-0

    Article  Google Scholar 

  4. Liou YC, Daley ME, Graham LA, Kay CM, Walker VK, Sykes BD, Davies PL (2000) Folding and structural characterization of highly disulfide-bonded beetle antifreeze protein produced in bacteria. Protein Expr Purif 19:148–157. doi:10.1006/prep.2000.1219

    Article  CAS  PubMed  Google Scholar 

  5. Gauthier SY, Kay CM, Sykes BD, Walker VK, Davies PL (1998) Disulfide bond mapping and structural characterization of spruce budworm antifreeze protein. Eur J Biochem 258:445–453. doi:10.1046/j.1432-1327.1998.2580445.x

    Article  CAS  PubMed  Google Scholar 

  6. Tyshenko MG, Anjou Marcd’, Davies PL, Daugulis AJ, Walker VK (2006) Challenges in the expression of disulfide bonded, threonine-rich antifreeze proteins in bacteria and yeast. Protein Expr Purif 47:152–161. doi:10.1016/j.pep.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  7. Bar M, Bar-Ziv R, Scherf T, Fass D (2006) Efficient production of a folded and functional, highly disulfide-bonded β-helix antifreeze protein in bacteria. Protein Expr Purif 48:243–252

    CAS  PubMed  Google Scholar 

  8. Zhang DQ, Liu B, Feng DR, He YM, Wang JF (2004) Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants. Protein Expr Purif 35:257–263. doi:10.1016/j.pep.2004.01.019

    Article  CAS  PubMed  Google Scholar 

  9. Davies PL, Hew CL (1990) Biochemistry of fish antifreeze proteins. FASEB J 4:2460–2468

    CAS  PubMed  Google Scholar 

  10. Tyshenko MG, Doucet D, Davies PL, Walker VK (1997) The antifreeze potential of the spruce budworm thermal hysteresis protein. Nat Biotechnol 15:887–890. doi:10.1038/nbt0997-887

    Article  CAS  PubMed  Google Scholar 

  11. Yang ZY, Zhou YX, Liu K, Cheng YH, Liu RZ, Chen G, Jia ZC (2003) Computational study on the function of water within a β-helix antifreeze protein dimer and in the process of ice-protein binding. Biophys J 85:2599–2605. doi:10.1016/S0006-3495(03)74682-7

    Article  CAS  PubMed  Google Scholar 

  12. Graether SP, Kuiper MJ, Gagne SM (2000) Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–328. doi:10.1038/35018610

    Article  CAS  PubMed  Google Scholar 

  13. Tang WH, Zhang JL, Wang ZY, Hong MM (2000) The cause of deviation made in determining the molecular weight of his-tag fusion proteins by SDS–PAGE. Acta Phytophysiol Sinica 26:64–66

    CAS  Google Scholar 

  14. Niu X, Guiltinan MJ (1994) DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Res 22:4969–4978. doi:10.1093/nar/22.23.4969

    Article  CAS  PubMed  Google Scholar 

  15. Liou YC, Tocilj A, Davies PL, Jia ZC (2000) Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406:322–324. doi:10.1038/35018604

    Article  CAS  PubMed  Google Scholar 

  16. Yue CW, Zhang YZ (2009) Cloning and expression of Tenebrio molitor antifreeze protein in Escherichia coli. Mol Biol Rep 36:529–536. doi:10.1007/s11033-008-9210-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Gan Zhao for the gene cloning. This work was supported by a grant from the National Natural Science Foundation of China (No.30760056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, L., Wang, Y., Wang, J. et al. Expression of biologically active recombinant antifreeze protein His-MpAFP149 from the desert beetle (Microdera punctipennis dzungarica) in Escherichia coli . Mol Biol Rep 37, 1725–1732 (2010). https://doi.org/10.1007/s11033-009-9594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9594-3

Keywords

Navigation