Skip to main content
Log in

Genome-wide analysis of recombination machinery for spliceosomal introns gain

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

What caused spliceosomal introns gain remains an unsolved problem. To this, defining what spliceosomal introns arise from is critical. Here, the introns density of the genomes is calculated for four species, indicating:(1) sex chromosomes in mammals have lower intron densities, (2) despite that, the proportion of UTRs (untranslated regions) with introns in sex chromosomes is higher than other ones, and (3) AT content of introns is more similar to that of intergenic regions when these regions comprise the majority of a chromosome, and more similar to that of exons, when exons are the majority of the chromosome. On the other hand, introns have been clearly demonstrated to invade genetic sequences in recent times while sex chromosomes evolved from a pair of autosomes within the last 300 millions years. One main difference between sex chromosomes and autosomes in mammalian is that sex chromosomes recombination stopped. Thus, recombination might be the main determinant for eukaryotes gaining spliceosomal introns. To further prove that and avoid giving weak signal, the whole genomes from eight eukaryotic species are analyzed and present strong signal for above the trend (3) in three species (t-test, P = 0.55 for C. elegans, P = 0.72 for D. melanogaster and P = 0.83 for A. thaliana). These results suggest that the genome-wide coincidence as above (3) can only be caused by the large-scale random unequal crossover in eukaryote meiosis, which might have fueled spliceosomal introns but hardly occurred in prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Logsdon JM (1998) The recent origins of spliceosomal introns revisited. Curr Opin Genet Dev 8:637–648. doi:10.1016/S0959-437X(98)80031-2

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen HD, Yoshihama M, Kenmochi N (2006) Phase distribution of spliceosomal introns: implications for intron origin. BMC Evol Biol 6:69. doi:10.1186/1471-2148-6-69

    Article  PubMed  Google Scholar 

  3. Pessa HK, Ruokolainen A, Frilander MJ (2006) The abundance of the spliceosomal snRNPs is not limiting the splicing of U12-type introns. RNA (New York, NY) 12:1883–1892. doi:10.1261/rna.213906

    CAS  Google Scholar 

  4. Rodriguez-Trelles F, Tarrio R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76. doi:10.1146/annurev.genet.40.110405.090625

    Article  CAS  PubMed  Google Scholar 

  5. Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev 7:211–221. doi:10.1146/annurev.genet.40.110405.090625

    Google Scholar 

  6. Murakami H, Keeney S (2008) Regulating the formation of DNA double-strand breaks in meiosis. Genes Dev 22:286–292. doi:10.1101/gad.1642308

    Article  CAS  PubMed  Google Scholar 

  7. Burgoyne PS, Mahadevaiah SK, Turner JM (2007) The management of DNA double-strand breaks in mitotic G2, and in mammalian meiosis viewed from a mitotic G2 perspective. Bioessays 29:974–986. doi:10.1002/bies.20639

    Article  CAS  PubMed  Google Scholar 

  8. Viera A, Santos JL, Page J et al (2004) DNA double-strand breaks, recombination and synapsis: the timing of meiosis differs in grasshoppers and flies. EMBO Rep 5:385–391. doi:10.1038/sj.embor.7400112

    Article  CAS  PubMed  Google Scholar 

  9. Duret L (2001) Why do genes have introns? Recombination might add a new piece to the puzzle. Trends Genet 17:172–175. doi:10.1016/S0168-9525(01)02236-3

    Article  CAS  PubMed  Google Scholar 

  10. Crick F (1971) General model for the chromosomes of higher organisms. Nature 234:25–27. doi:10.1038/234025a0

    Article  CAS  PubMed  Google Scholar 

  11. Forsdyke DR (1995) A stem-loop “kissing” model for the initiation of recombination and the origin of introns. Mol Biol Evol 12:949–958

    CAS  PubMed  Google Scholar 

  12. Hartung F, Blattner FR, Puchta H (2002) Intron gain and loss in the evolution of the conserved eukaryotic recombination machinery. Nucleic Acids Res 30:5175–5181

    Article  CAS  PubMed  Google Scholar 

  13. Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967. doi:10.1126/science.286.5441.964

    Article  CAS  PubMed  Google Scholar 

  14. Shepelev V, Fedorov A (2006) Advances in the exon-intron database (EID). Brief Bioinform 7:178–185. doi:10.1093/bib/bbl003

    Article  CAS  PubMed  Google Scholar 

  15. Sakharkar MK, Kangueane P, Petrov DA et al (2002) SEGE: a database on ‘intron less/single exonic’ genes from eukaryotes. Bioinformatics (Oxford, England) 18:1266–1267. doi:10.1093/bioinformatics/18.9.1266

    Article  CAS  Google Scholar 

  16. Cannone JJ, Subramanian S, Schnare MN et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3:2. doi:10.1186/1471-2105-3-2

    Article  Google Scholar 

  17. McVean GA, Myers SR, Hunt S et al (2004) The fine-scale structure of recombination rate variation in the human genome. Science (New York, NY) 304:581–584. doi:10.1126/science.1092500

    CAS  Google Scholar 

  18. Frankham R, Briscoe DA, Nurthen RK (1980) Unequal crossing over at the rRNA tandon as a source of quantitative genetic variation in drosophila. Genetics 95:727–742

    CAS  PubMed  Google Scholar 

  19. Frankham R, Briscoe DA, Nurthen RK (1978) Unequal crossing over at the rRNA locus as a source of quantitative genetic variation. Nature 272:80–81. doi:10.1038/272080a0

    Article  CAS  PubMed  Google Scholar 

  20. Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461

    Article  CAS  PubMed  Google Scholar 

  21. Begun A (2008) Power estimation of the t test for detecting differential gene expression. Funct Integr Genomics 8:109–113. doi:10.1007/s10142-007-0061-8

    Article  CAS  PubMed  Google Scholar 

  22. Schaffner SF (2004) The X chromosome in population genetics. Nat Rev Genet 5:43–51. doi:10.1038/nrg1247

    Article  CAS  PubMed  Google Scholar 

  23. Baker BS, Belote JM (1983) Sex determination and dosage compensation in drosophila melanogaster. Annu Rev Genet 17:345–393

    Article  CAS  PubMed  Google Scholar 

  24. Kelly WG, Schaner CE, Dernburg AF et al (2002) X-chromosome silencing in the germline of C. elegans. Development 129:479–492

    CAS  PubMed  Google Scholar 

  25. Ward MA, Ward WS (2004) A model for the function of sperm DNA degradation. Reprod Fertil Dev 16:547–554

    Article  CAS  PubMed  Google Scholar 

  26. Omura M, Nishikawa T (2006) Glucocorticoid remediable aldosteronism. Nippon rinsho Suppl 1:628–634

    Google Scholar 

  27. Steen VM, Molven A, Aarskog NK et al (1995) Homologous unequal cross-over involving a 2.8 kb direct repeat as a mechanism for the generation of allelic variants of the human cytochrome P450 CYP2D6 gene, vol 4. Oxford Univ Press, Oxford, pp 2251–2257

    Google Scholar 

  28. Sakharkar MK, Chow VT, Kangueane P (2004) Distributions of exons and introns in the human genome. In Silico Biol 4:387–393

    CAS  PubMed  Google Scholar 

  29. Qiu WG, Schisler N, Stoltzfus A (2004) The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol Biol Evol 21:1252–1263. doi:10.1093/molbev/msh120

    Article  CAS  PubMed  Google Scholar 

  30. Zhao S, Shetty J, Hou L et al (2004) Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. Genome Res 14:1851–1860. doi:10.1101/gr.2663304

    Article  CAS  PubMed  Google Scholar 

  31. Hu K (2006) Intron exclusion and the mystery of intron loss. FEBS Lett 580:6361–6365. doi:10.1016/j.febslet.2006.10.048

    Article  CAS  PubMed  Google Scholar 

  32. Logsdon JM (1998) The recent origins of spliceosomal introns revisited. Curr Opin Genet Dev 8:637–648. doi:10.1016/S0959-437X(98)80031-2

    Article  CAS  PubMed  Google Scholar 

  33. Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends Genet 7:145–148

    Article  CAS  PubMed  Google Scholar 

  34. Lane CE, van den Heuvel K, Kozera C et al (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913. doi:10.1073/pnas.0707419104

    Article  CAS  PubMed  Google Scholar 

  35. Panton LJ, Tesh RB, Nadeau KC et al (1991) A test for genetic exchange in mixed infections of Leishmania major in the sand fly Phlebotomus papatasi. J Protozool 38:224–228

    CAS  PubMed  Google Scholar 

  36. Zuckerman SH, Solus JF, Gillespie FP et al (1984) Retention of both parental mitochondrial-DNA species in mouse Chinese-hamster somatic-cell hybrids. Somat Cell Mol Genet 10:85–92

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi JI, Tagashira Y, Yoshida MC (1985) Absence of extensive recombination between interspecies and intraspecies mitochondrial-DNA in mammalian-cells. Exp Cell Res 160:387–395

    Article  CAS  PubMed  Google Scholar 

  38. King MP, Attardi G (1988) Injection of mitochondria into human-cells leads to a rapid replacement of the endogenous mitochondrial-DNA. Cell 52:811–819

    Article  CAS  PubMed  Google Scholar 

  39. Niu DK (2008) Exon definition as a potential negative force against intron losses in evolution. Biol Direct 3:46. doi:10.1186/1745-6150-3-46

Download references

Acknowledgments

We acknowledge the supports from the National 973 Project China No. 2007CB707802. Some data were supplied by Bingbing Wang and Vicki L. Chandler from Iowa State University, Department of Genetics, Development and Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidong Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, H. Genome-wide analysis of recombination machinery for spliceosomal introns gain. Mol Biol Rep 37, 1551–1557 (2010). https://doi.org/10.1007/s11033-009-9557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9557-8

Keywords

Navigation