Skip to main content
Log in

Regulatory expression of genes related to metastasis by TGF-β and activin A in B16 murine melanoma cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

TGF-β induces epithelial-mesenchymal transition, which occurs during tumor cell invasiveness in pathological state, in limited cells. As a first step to understand the role of TGF-β and the structurally related activin during melanoma metastasis, expression of metastasis-related genes was examined in murine melanoma cells. Treatment with TGF-β1 or activin A down-regulated E-cadherin in B16 cells in a dose-dependent manner. In epithelial cells, TGF-β-induced high mobility group A2 (HMGA2) gene product is suggested to down-regulate E-cadherin through up-regulation of zinc-finger transcription factors Slug and Snail, and basic helix-loop-helix transcription factor Twist. Unlike the regulation in epithelial cells, TGF-β1 treatment rather decreased mRNA expression of HMGA2, indicating a distinct mechanism on TGF-β/activin-induced down-regulation. Transfection of double-stranded interfering RNA (dsRNAi) for activin receptor-like kinase (ALK) type I receptors revealed that ALK5, a prototype of TGF-β receptor, mainly transmits TGF-β signals on the E-cadherin down-regulation at the mRNA level, and that a prototype receptor ALK4 elicited the activin effect. TGF-β/activin potentiated down-regulation of E-cadherin and HMGA2 also in B16 sublines that are susceptible to metastasis. However, the extent of down-regulation tended to be smaller, and less Smad2, a signal mediator for TGF-β/activin, was phosphorylated in response to the ligand, resulting from less expression of type I receptors in the B16 sublines. These results suggest that the receptor expression level determines strength of the signals for TGF-β/activin through phosphorylation of Smad2, which explains pluripotency of the ligand family partly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schilling SH, Hjelmeland AB, Rich JN, Wang XF (2007) TGF-β: a multipotential cytokine. In: Derynck R, Miyazono K (eds) The TGF-β family, 1st edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 45–77

    Google Scholar 

  2. Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127:2021–2036. doi:10.1083/jcb.127.6.2021

    Article  CAS  PubMed  Google Scholar 

  3. Shirakihara T, Saitoh M, Miyazono K (2007) Differential regulation of epithelial and mesenchymal markers by δEF1 proteins in epithelial mesenchymal transition induced by TGF-β. Mol Biol Cell 18:3533–3544. doi:10.1091/mbc.E07-03-0249

    Article  CAS  PubMed  Google Scholar 

  4. Attisano L, Wrana JL (2002) Signal transduction by the TGF-β superfamily. Science 296:1646–1647. doi:10.1126/science.1071809

    Article  CAS  PubMed  Google Scholar 

  5. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF-β superfamily signaling. Genes Cells 7:1191–1204. doi:10.1046/j.1365-2443.2002.00599.x

    Article  CAS  PubMed  Google Scholar 

  6. Feng XH, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693. doi:10.1146/annurev.cellbio.21.022404.142018

    Article  CAS  PubMed  Google Scholar 

  7. Massagué J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810. doi:10.1101/gad.1350705

    Article  PubMed  CAS  Google Scholar 

  8. Martínez-Esparza M, Jiménez-Cervantes C, Beermann F, Aparicio P, Lozano JA, García-Borrón JC (1997) Transforming growth factor-β1 inhibits basal melanogenesis in B16/F10 mouse melanoma cells by increasing the rate of degradation of tyrosinase and tyrosinase-related protein-1. J Biol Chem 272:3967–3972. doi:10.1074/jbc.272.7.3967

    Article  PubMed  Google Scholar 

  9. Martínez-Esparza M, Ferrer C, Castells MT, García-Borrón JC, Zuasti A (2001) Transforming growth factor β1 mediates hypopigmentation of B16 mouse melanoma cells by inhibition of melanin formation and melanosome maturation. Int J Biochem Cell Biol 33:971–983. doi:10.1016/S1357-2725(01)00068-1

    Article  PubMed  Google Scholar 

  10. Murakami M, Ikeda T, Saito T, Ogawa K, Nishino Y, Nakaya K, Funaba M (2006) Transcriptional regulation of plasminogen activator inhibitor-1 by transforming growth factor-β, activin A and microphthalmia-associated transcription factor. Cell Signal 18:256–265. doi:10.1016/j.cellsig.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  11. Ramont L, Pasco S, Hornebeck W, Maquart FX, Monboisse JC (2003) Transforming growth factor-β1 inhibits tumor growth in a mouse melanoma model by down-regulating the plasminogen activation system. Exp Cell Res 291:1–10. doi:10.1016/S0014-4827(03)00336-7

    Article  CAS  PubMed  Google Scholar 

  12. Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW, Naber SP, Weinberg RA (2005) The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37:1047–1054. doi:10.1038/ng1634

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura K, Yoshikawa N, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M (2002) Characterization of mouse melanoma cell lines by their mortal malignancy using an experimental metastatic model. Life Sci 70:791–798. doi:10.1016/S0024-3205(01)01454-0

    Article  CAS  PubMed  Google Scholar 

  14. Funaba M, Ikeda T, Murakami M, Ogawa K, Tsuchida K, Sugino H, Abe M (2003) Transcriptional activation of mouse mast cell protease-7 by activin and transforming growth factor-β is inhibited by microphthalmia-associated transcription factor. J Biol Chem 278:52032–52041. doi:10.1074/jbc.M306991200

    Article  CAS  PubMed  Google Scholar 

  15. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A (2006) Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174:175–183. doi:10.1083/jcb.200512110

    Article  CAS  PubMed  Google Scholar 

  16. Funaba M, Murakami M (2008) A sensitive detection of phospho-Smad1/5/8 and Smad2 in Western blot analyses. J Biochem Biophys Methods 70:816–819. doi:10.1016/j.jbbm.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  17. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16:1987–2002. doi:10.1091/mbc.E04-08-0658

    Article  CAS  PubMed  Google Scholar 

  18. Peinado H, Portillo F, Cano A (2004) Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48:365–375. doi:10.1387/ijdb.041794hp

    Article  CAS  PubMed  Google Scholar 

  19. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939. doi:10.1016/j.cell.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  20. Poser I, Domínguez D, Garcia de Herreros A, Varnai A, Buettner R, Bosserhoff AK (2001) Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276:24661–24666. doi:10.1074/jbc.M011224200

    Article  CAS  PubMed  Google Scholar 

  21. Nyormoi O, Bar-Eli M (2003) Transcriptional regulation of metastasis-related genes in human melanoma. Clin Exp Metastasis 20:251–263. doi:10.1023/A:1022991302172

    Article  CAS  PubMed  Google Scholar 

  22. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J 21:1743–1753. doi:10.1093/emboj/21.7.1743

    Article  CAS  PubMed  Google Scholar 

  23. Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P (2003) Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol Cell 12:817–828. doi:10.1016/S1097-2765(03)00386-1

    Article  CAS  PubMed  Google Scholar 

  24. Danen EH, de Vries TJ, Morandini R, Ghanem GG, Ruiter DJ, van Muijen GN (1996) E-cadherin expression in human melanoma. Melanoma Res 6:127–131

    Article  CAS  PubMed  Google Scholar 

  25. Nyormoi O, Bar-Eli M (2003) Transcriptional regulation of metastasis-related genes in human melanoma. Clin Exp Metastasis 20:251–263. doi:10.1023/A:1022991302172

    Article  CAS  PubMed  Google Scholar 

  26. Murakami M, Kawachi H, Ogawa K, Nishino Y, Funaba M (2009) Receptor expression modulates the specificity of transforming growth factor-β signaling pathways. Genes Cells (in press)

  27. Onken MD, Ehlers JP, Worley LA, Makita J, Yokota Y, Harbour JW (2006) Functional gene expression analysis uncovers phenotypic switch in aggressive uveal melanomas. Cancer Res 66:4602–4609. doi:10.1158/0008-5472.CAN-05-4196

    Article  CAS  PubMed  Google Scholar 

  28. Dyson S, Gurdon JB (1998) The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93:557–568. doi:10.1016/S0092-8674(00)81185-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. A.F. Parlow for providing recombinant human activin A. This work was supported by Kakenhi from the Japan Society for the Promotion of Science, by grants for Graduate Schools from The Foundation for Japanese Private School Promotion, and by The Science Research Promotion Fund from The Promotion and Mutual Aid Corporation for Private Schools of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Funaba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakami, M., Suzuki, M., Nishino, Y. et al. Regulatory expression of genes related to metastasis by TGF-β and activin A in B16 murine melanoma cells. Mol Biol Rep 37, 1279–1286 (2010). https://doi.org/10.1007/s11033-009-9502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9502-x

Keywords

Navigation