Skip to main content

Advertisement

Log in

ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The ThPOD1 gene encodes a peroxidase and was isolated from a Tamarix hispida NaCl-stress root cDNA library. We found that ThPOD1 expression could be induced by abiotic stresses such as cold, salt, drought and exogenous abscisic acid. These findings suggested that ThPOD1 might be involved in the plant response to environmental stresses and ABA treatment. To elucidate the function of this gene, recombinant plasmids expressing full-length ThPOD1 as well as ThPOD2 (aa 41-337), and ThPOD3 (aa 73-337) truncated polypeptides were constructed. SDS–PAGE and Western blot analyses of the fusion proteins revealed that the molecular weights of ThPOD1, ThPOD2 and ThPOD3 were ~57, ~50 and ~47 kDa, respectively. Stress assays of E. coli treated with the recombinant plasmids indicated that ThPOD3 could improve resistance to drought stress. This finding could potentially be used to improve plant tolerance to drought stress via gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265. doi:10.1007/s00299-005-0972-6

    Article  CAS  PubMed  Google Scholar 

  2. Bakalovic N, Passardi F, Ioannidis V, Cosio C, Penel C, Falquet L et al (2006) PeroxiBase: a class III plant peroxidase database. Phytochemistry 67:534–539. doi:10.1016/j.phytochem.2005.12.020

    Article  CAS  PubMed  Google Scholar 

  3. Morohashi Y (2002) Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J Exp Bot 53:1643–1650. doi:10.1093/jxb/erf012

    Article  CAS  PubMed  Google Scholar 

  4. Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131–134. doi:10.1104/pp.125.1.131

    Article  CAS  PubMed  Google Scholar 

  5. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540. doi:10.1016/j.tplants.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Serrano M, Fernandez MD, Pomar F, Pedreno MA, Ros Barcelo A (2004) Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single-cell tracheary elements and xylem vessels. J Exp Bot 55:423–431. doi:10.1093/jxb/erh036

    Article  CAS  PubMed  Google Scholar 

  7. Ranieri A, Petacco F, Castagna A, Soldatini GF (2000) Redox state and peroxidase system in sunflower plants exposed to ozone. Plant Sci 159:159–167. doi:10.1016/S0168-9452(00)00352-6

    Article  CAS  PubMed  Google Scholar 

  8. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsu HI (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468. doi:10.1093/pcp/pce061

    Article  CAS  PubMed  Google Scholar 

  9. Delannoy E, Al Jallou, Assigbetse K, Marmey P, Geiger JP, Lherminier J et al (2003) Activity of class III peroxidases in the defense of cotton to bacterial blight. Mol Plant Microbe Interact 16:1030–1038. doi:10.1094/MPMI.2003.16.11.1030

    Article  CAS  PubMed  Google Scholar 

  10. Dowd PF, Johnson ET (2005) Association of a specific cationic peroxidase isozyme with maize stress and disease resistance responses, genetic identification, and identification of a cDNA coding for the isozyme. J Agric Food Chem 53:4464–4470. doi:10.1021/jf0404750

    Article  CAS  PubMed  Google Scholar 

  11. Lo’pez-Molina D, Heering HA, Smulevich G, Tudela J, Thorneley RN, Garc’ıa-Ca’novas F et al (2003) Purification and characterization of a new cationic peroxidase from fresh flowers of Cynara scolymus L. J Inorg Biochem 94:243–254. doi:10.1016/S0162-0134(02)00650-5

    Article  Google Scholar 

  12. Marjamaa K, Hilde’n K, Kukkola E, Lehtonen M, Holkeri H, Haapaniemi P et al (2006) Cloning, characterization and localization of three novel class III peroxidases in lignifying xylem of Norway spruce (Picea abies). Plant Mol Biol 61:719–732. doi:10.1007/s11103-006-0043-6

    Article  CAS  PubMed  Google Scholar 

  13. Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138. doi:10.1016/S0378-1119(02)00465-1

    Article  CAS  PubMed  Google Scholar 

  14. Hiraga S, Yamamoto K, Ito H, Sasaki K, Matsui H, Honma M et al (2000) Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett 471:245–250. doi:10.1016/S0014-5793(00)01409-5

    Article  CAS  PubMed  Google Scholar 

  15. Valerio L, De Meyer M, Penel C, Dunand C (2004) Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry 65:1331–1342. doi:10.1016/j.phytochem.2004.04.017

    Article  CAS  PubMed  Google Scholar 

  16. Li HY, Wang YC, Jiang J, Liu GF, Gao CQ, Yang CP (2009) Identification of genes responsive to salt stress on Tamarix hispida roots. Gene 433(1–2):65–71

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Zheng YZ (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332. doi:10.1016/j.bbrc.2005.03.165

    Article  CAS  PubMed  Google Scholar 

  18. Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–213. doi:10.1385/MB:19:2:201

    Article  CAS  PubMed  Google Scholar 

  19. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  20. Chen JM, Gao C, Shi Q, Shan B, Lei YJ, Dong CF et al (2008) Different expression patterns of CK2 subunits in the brains of experimental animals and patients with transmissible spongiform encephalopathies. Arch Virol 153:1013–1020. doi:10.1007/s00705-008-0084-z

    Article  CAS  PubMed  Google Scholar 

  21. Park SY, Ryu SH, Kwon SY, Lee HS, Kim JG, Kwak SS (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato in response to stress. Mol Genet Genomics 269:542–552. doi:10.1007/s00438-003-0862-y

    Article  CAS  PubMed  Google Scholar 

  22. Parra-Lobato MC, Alvarez-Tinaut MC, Gomez-Jimenez MC (2007) Cloning and characterization of a root sunflower peroxidase gene putatively involved in cell elongation. J Plant Physiol 164:1688–1692. doi:10.1016/j.jplph.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  23. Agrawal GK, Rakwal R, Jwa NS, Agrawal VP (2002) Characterization of a novel rice gene OsATX and modulation of its expression by components of the stress signaling pathways. Physiol Plant 116:87–95. doi:10.1034/j.1399-3054.2002.1160111.x

    Article  CAS  PubMed  Google Scholar 

  24. Shinozaki K, Yamaguchi-Shinozakiy K, Sekiz M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi:10.1016/S1369-5266(03)00092-X

    Article  CAS  PubMed  Google Scholar 

  25. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG et al (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305. doi:10.1016/j.bbrc.2006.12.027

    Article  CAS  PubMed  Google Scholar 

  26. Lan Y, Cai D, Zheng YZ (2005) Expression of three different group soybean lea genes enhanced stress tolerance in Escherichia coli. Acta Bot Sin

  27. Yamada A, Sekifuchi M, Mimura T, Ozeki Y (2002) The role of plant CCTa in salt- and osmotic-stress tolerance. Plant Cell Physiol 43:1043–1048. doi:10.1093/pcp/pcf120

    Article  CAS  PubMed  Google Scholar 

  28. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  CAS  Google Scholar 

  29. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–254. doi:10.1111/j.1399-3054.1997.tb04780.x

    Article  CAS  Google Scholar 

  30. Schweizer P (2008) Tissue-specific expression of a defence-related peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis. Mol Plant Pathol 9:45–57

    CAS  PubMed  Google Scholar 

  31. Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS et al (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta 227:867–881. doi:10.1007/s00425-007-0663-3

    Article  CAS  PubMed  Google Scholar 

  32. Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    CAS  PubMed  Google Scholar 

  33. Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Responses of antioxidants to paraquat in pea leaves. Plant Physiol 113:249–257

    CAS  PubMed  Google Scholar 

  34. Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  CAS  PubMed  Google Scholar 

  35. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657. doi:10.1126/science.284.5414.654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by national natural science foundation (Grant No. 30571509), Heilongjiang province scientific and technological project (Grant No. GB06B303 and WB07N02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, XH., Jiang, J., Wang, BC. et al. ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli . Mol Biol Rep 37, 1183–1190 (2010). https://doi.org/10.1007/s11033-009-9484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9484-8

Keywords

Navigation