Skip to main content

Advertisement

Log in

The porcine ANG, RNASE1 and RNASE6 genes: molecular cloning, polymorphism detection and the association with haematological parameters

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Angiogenin (ANG) [also known as ribonuclease, RNase A family, 5 (RNASE5)], ribonuclease, RNase A family, 1 (pancreatic) (RNASE1) and ribonuclease, RNase A family, k6 (RNASE6) are three members of the RNase A superfamily. It has been suggested that these three genes play important roles in host defense. In this study, we obtained the whole open reading frame (ORF) of each gene and found the deduced proteins contain some similar structures harboring a catalytic triad and an invariant “CKXXNTF” signature motif. One single nucleotide polymorphism (SNP) was detected in each gene (g. 149G>T polymorphism in the porcine ANG gene, which resulted in an amino acid change from glycine to valine, g. 296A>G polymorphism in the porcine RNASE1 gene and g. 389C>T polymorphism in the porcine RNASE6 gene). Association analyses revealed the significant associations (P < 0.05) between the porcine ANG g. 149G>T polymorphism and mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean platelet volume (MPV) and platelet-large cell ratio (P-LCR) measured on 0-day-old pigs and MCV measured at 32 days after birth. The porcine RNASE6 g. 389C>T polymorphism was significantly associated (P < 0.05) with MCV, MCH and neutrophil percentage (NEI %) measured on 0-day-old pigs, respectively. Our current findings, if confirmed by other studies, might shed some light on the roles of the investigated genes in host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beintema JJ, Kleineidam RG (1998) The ribonuclease A superfamily: general discussion. Cell Mol Life Sci 54:825–832. doi:10.1007/s000180050211

    Article  CAS  PubMed  Google Scholar 

  2. Cho S, Beintema JJ, Zhang J (2005) The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 85:208–220. doi:10.1016/j.ygeno.2004.10.008

    Article  CAS  PubMed  Google Scholar 

  3. Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF et al (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486. doi:10.1021/bi00341a030

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg HF, Domachowske JB (2001) Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70:691–698

    CAS  PubMed  Google Scholar 

  5. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273. doi:10.1038/ni888

    Article  CAS  PubMed  Google Scholar 

  6. Egesten A, Dyer KD, Batten D, Domachowske JB, Rosenberg HF (1997) Ribonucleases and host defense: identification, localization and gene expression in adherent monocytes in vitro. Biochim Biophys Acta 1358:255–260. doi:10.1016/S0167-4889(97)00081-5

    Article  CAS  PubMed  Google Scholar 

  7. Lapteva N, Nieda M, Ando Y, Nicol A, Ide K, Yamaura A et al (2001) Gene expression analysis in human monocytes, monocyte-derived dendritic cells, and alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. Biochem Biophys Res Commun 289:531–538. doi:10.1006/bbrc.2001.6003

    Article  CAS  PubMed  Google Scholar 

  8. Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY et al (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134–6142

    CAS  PubMed  Google Scholar 

  9. Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT (2006) Ribonucleases in HIV type 1 inhibition: effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase gene and protein expression. AIDS Res Hum Retroviruses 22:897–907. doi:10.1089/aid.2006.22.897

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg HF, Dyer KD (1996) Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res 24:3507–3513. doi:10.1093/nar/24.18.3507

    Article  CAS  PubMed  Google Scholar 

  11. Dyer KD, Rosenberg HF, Zhang J (2004) Isolation, characterization, and evolutionary divergence of mouse RNase 6: evidence for unusual evolution in rodents. J Mol Evol 59:657–665. doi:10.1007/s00239-004-2657-0

    Article  CAS  PubMed  Google Scholar 

  12. Cho S, Zhang J (2007) Zebrafish ribonucleases are bactericidal: implications for the origin of the vertebrate RNase A superfamily. Mol Biol Evol 24:1259–1268. doi:10.1093/molbev/msm047

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg HF (2008) RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 83:1079–1087. doi:10.1189/jlb.1107725

    Article  CAS  PubMed  Google Scholar 

  14. Nitto T, Dyer KD, Czapiga M, Rosenberg HF (2006) Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus. J Biol Chem 281:25622–25634. doi:10.1074/jbc.M604313200

    Article  CAS  PubMed  Google Scholar 

  15. Crabtree B, Holloway DE, Baker MD, Acharya KR, Subramanian V (2007) Biological and structural features of murine angiogenin-4, an angiogenic protein. Biochemistry 46:2431–2443. doi:10.1021/bi062158n

    Article  CAS  PubMed  Google Scholar 

  16. Siegel I, Liu TL, Gleicher N (1981) The red-cell immune system. Lancet 2:556–559. doi:10.1016/S0140-6736(81)90941-7

    Article  CAS  PubMed  Google Scholar 

  17. Niehans GA, Cherwitz DL, Staley NA, Knapp DJ, Dalmasso AP (1996) Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin). Am J Pathol 149:129–142

    CAS  PubMed  Google Scholar 

  18. Horuk R, Colby TJ, Darbonne WC, Schall TJ, Neote K (1993) The human erythrocyte inflammatory peptide (chemokine) receptor. Biochemical characterization, solubilization, and development of a binding assay for the soluble receptor. Biochemistry 32:5733–5738. doi:10.1021/bi00073a002

    Article  CAS  PubMed  Google Scholar 

  19. Neote K, Darbonne W, Ogez J, Horuk R, Schall TJ (1993) Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. J Biol Chem 268:12247–12249

    CAS  PubMed  Google Scholar 

  20. Kapsoritakis AN, Koukourakis MI, Sfiridaki A, Potamianos SP, Kosmadaki MG, Koutroubakis IE et al (2001) Mean platelet volume: a useful marker of inflammatory bowel disease activity. Am J Gastroenterol 96:776–781. doi:10.1111/j.1572-0241.2001.03621.x

    Article  CAS  PubMed  Google Scholar 

  21. Thompson CB, Love DG, Quinn PG, Valeri CR (1983) Platelet size does not correlate with platelet age. Blood 62:487–494

    CAS  PubMed  Google Scholar 

  22. Patrick CH, Lazarchick J, Stubbs T, Pittard WB (1987) Mean platelet volume and platelet distribution width in the neonate. Am J Pediatr Hematol Oncol 9:130–132. doi:10.1097/00043426-198722000-00002

    Article  CAS  PubMed  Google Scholar 

  23. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6:173–182. doi:10.1038/nri1785

    Article  CAS  PubMed  Google Scholar 

  24. Zou Z, Ren J, Yan X, Huang X, Yang S, Zhang Z et al (2008) Quantitative trait loci for porcine baseline erythroid traits at three growth ages in a White Duroc x Erhualian F(2) resource population. Mamm Genome. doi:10.1007/s00335-008-9142-9

  25. Reiner G, Fischer R, Hepp S, Berge T, Köhler F, Willems H (2007) Quantitative trait loci for red blood cell traits in swine. Anim Genet 38:447–452. doi:10.1111/j.1365-2052.2007.01629.x

    Article  CAS  PubMed  Google Scholar 

  26. Reiner G, Fischer R, Hepp S, Berge T, Köhler F, Willems H (2008) Quantitative trait loci for white blood cell numbers in swine. Anim Genet 39:163–168. doi:10.1111/j.1365-2052.2008.01700.x

    Article  CAS  PubMed  Google Scholar 

  27. Wattrang E, Almqvist M, Johansson A, Fossum C, Wallgren P, Pielberg G et al (2005) Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim Genet 36:337–345. doi:10.1111/j.1365-2052.2005.01315.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the NSFC-Guangdong key project (U0631005), the National Natural Science Foundation of China (30771537), National High Science and Technology Foundation of China “863” (2007AA10Z148), the Key Project of National Basic Research and Developmental Plan (2006CB102105). We thank Miss Nunu Sun for her help in providing the samples and the data collections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Liang, Z., Zhao, S. et al. The porcine ANG, RNASE1 and RNASE6 genes: molecular cloning, polymorphism detection and the association with haematological parameters. Mol Biol Rep 36, 2405–2411 (2009). https://doi.org/10.1007/s11033-009-9471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9471-0

Keywords

Navigation