Skip to main content

Advertisement

Log in

Impact of hemostatic gene single point mutations in patients with non-diabetic coronary artery disease

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Single point mutations in the genes coding for hemostatic factors were shown to be major inherited predisposing factors for venous thromboembolism. However, their contribution in the development of non-diabetic coronary artery disease [nDCAD] remains controversial. Angiographically demonstrated nDCAD patients (n = 86) and healthy controls (n = 90) were included in the study. Genotype analysis of hemostatic gene polymorphisms were assessed by using CVD strip assay, based on allele specific oligonucleotide probes. The carrier frequency of factor V (FV) H1299R, prothrombin G20210A, glycoprotein (Gp) IIIa L33P, plasminogen activator inhibitor-I (PAI-1) 4G/5G, 4G/4G, 5G/5G, methylenetetrahydrofolate reductase (MTHFR) A1298C and β-fibrinogen −455 G > A were similar between patients and controls. In contrast, frequency of FV Leiden was significantly higher among patients (12.5%) than controls (5%, OR: 7.94; 95%CI: 1.9–49.6) and FXIII V34L was significantly lower among patients (23.7%) than controls (40%, OR: 0.24; 95%CI: 0.1–0.89). In addition, the frequency of the MTHFR C677T polymorphism was 32.5% among patients compared with 42.5% in controls, of which the T/T genotype was significantly lower among patients (5%) than controls (17.5%, OR: 0.06; 95%CI: 0.01–0.58). No difference was observed in prevalence of prothrombin G20210A, FV H1299R, Gp IIIa L33P, PAI-1 4G5G, MTHFR A1298C, β fibrinogen 455 G > A mutations between patients and controls. However, lower frequency of FXIII Val34Leu and MTHFR C677T polymorphisms may decrease, while FV Leiden polymorphism may increase development of nDCAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nordlie MA, Wold LE, Kloner RA (2005) Genetic contributors toward increased risk for ischemic heart disease. J Mol Cell Cardiol 39:667–679. doi:10.1016/j.yjmcc.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  2. Atherosclerosis, thrombosclerosis and vascular biology Italian study group (2003) No evidence of association between prothrombotic gene polymorphisms and the development of acute myocardial infarction at a young age. Circulation 107:1117–1122. doi:10.1161/01.CIR.0000051465.94572.D0

    Article  Google Scholar 

  3. Pastinen T, Perola M, Niini P, Terwilliger J, Salomaa V, Vartiainen E, Peltonen L, Syvänen A (1998) Array-based multiplex analysis of candidate genes reveals two independent and additive genetic risk factors for myocardial infarction in the Finnish population. Hum Mol Genet 7:1453–1462. doi:10.1093/hmg/7.9.1453

    Article  CAS  PubMed  Google Scholar 

  4. Uitte de Willige S, de Visser MC, Houwing-Duistermaat JJ, Rosendaal FR, Vos HL, Bertina RM (2005) Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma levels. Blood 106:4176–4183. doi:10.1182/blood-2005-05-2180

    Article  CAS  PubMed  Google Scholar 

  5. Duga S, Asselta R, Santagostino E, Zeinali S, Simonic T, Malcovati M, Mannucci PM, Tenchini ML (2000) Missense mutations in the human beta fibrinogen gene cause congenital afibrinogenemia by impairing fibrinogen secretion. Blood 95:1336–1341

    CAS  PubMed  Google Scholar 

  6. Lane DA, Grant PJ (2000) Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 95:1517–1532

    CAS  PubMed  Google Scholar 

  7. Mann KG, Kalafatis M (2003) Factor V: a combination of Dr Jekyll and Mr Hyde. Blood 101:20–30. doi:10.1182/blood-2002-01-0290

    Article  CAS  PubMed  Google Scholar 

  8. Zaatari GS, Otrock ZK, Sabbagh AS, Mahfouz RA (2006) Prevalence of factor V R2 (H1299R) polymorphism in the Lebanese population. Pathology 38:442–444. doi:10.1080/00313020600922934

    Article  CAS  PubMed  Google Scholar 

  9. Mohanty D, Ghosh K, Khare A (2004) Kulkarni. Thrombophilia in coronary artery disease: a double jeopardy. B Indian J Med Res 120:13–23

    CAS  Google Scholar 

  10. Castoldi E, Brugge JM, Nicolaes GA, Girelli D, Tans G, Rosing J (2004) Impaired APC cofactor activity of factor V plays a major role in the APC resistance associated with the factor V Leiden (R506Q) and R2 (H1299R) mutations. Blood 103:4173–4179. doi:10.1182/blood-2003-10-3578

    Article  CAS  PubMed  Google Scholar 

  11. Margaglione M, Bossone A, Coalizzo D, D’Andrea G, Brancaccio V, Ciampa A, Grandone E, Di MGFV (2002) HR2 haplotype as additional inherited risk factor for deep vein thrombosis in individuals with a high-risk profile. Thromb Haemost 87:32–36

    CAS  PubMed  Google Scholar 

  12. Ariens RA, Lai TS, Weisel JW, Greenberg CS, Grant PJ (2002) Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood 100:743–754. doi:10.1182/blood.V100.3.743

    Article  CAS  PubMed  Google Scholar 

  13. Wells PS, Anderson JL, Scarvelis DK, Doucette SP, Gagnon F (2006) Factor XIII Val34Leu variant is protective against venous thromboembolism: a HuGE review and meta-analysis. Am J Epidemiol 164:101–109. doi:10.1093/aje/kwj179

    Article  PubMed  Google Scholar 

  14. Elbaz A, Poirier O, Canaple S, Chédru F, Cambien F, Amarenco P (2000) The association between the Val34Leu polymorphism in the factor XIII gene and brain infarction. Blood 95:586–591

    CAS  PubMed  Google Scholar 

  15. Gemmati D, Federici F, Campo G, Tognazzo S, Serino ML, De Mattei M, Valgimigli M, Malagutti P, Guardigli G, Ferraresi P, Bernardi F, Ferrari R, Scapoli GL, Catozzi L (2007) Factor XIIIA-V34L and factor XIIIB-H95R gene variants: effects on survival in myocardial infarction patients. Mol Med 13:112–120. doi:10.2119/2006-00049.Gemmati

    Article  CAS  PubMed  Google Scholar 

  16. Ariens RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ (2000) The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 96:988–995

    CAS  PubMed  Google Scholar 

  17. Catto AJ, Kohler HP, Coore J, Mansfield MW, Stickland MH, Grant PJ (1999) Association of a common polymorphism in the factor XIII gene with venous thrombosis. Blood 93:906–908

    CAS  PubMed  Google Scholar 

  18. González-Conejero R, Fernández-Cadenas I, Iniesta JA, Marti- Fabregas J, Obach V, Alvarez-Sabín J, Vicente V, Corral J, Montaner J, Proyecto Ictus Research Group (2006) Role of fibrinogen levels and factor XIII V34L polymorphism in thrombolytic therapy in stroke patients. Stroke 37:2288–2293

    Article  PubMed  Google Scholar 

  19. Russo C, Girelli D, Olivieri O, Guarini P, Manzato F, Pizzolo F, Zaia B, Mazzucco A, Corrocher R (2001) G20210A prothrombin gene polymorphism and prothrombin activity in subjects with or without angiographically documented coronary artery disease. Circulation 103:2436–2440

    CAS  PubMed  Google Scholar 

  20. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM (1996) A common genetic variation in the 39-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88:3698–3703

    CAS  PubMed  Google Scholar 

  21. Nagaraja D, Kruthika-Vinod TP, Christopher R (2007) The prothrombin gene G20210A variant and puerperal cerebral venous and sinus thrombosis in South Indian women. J Clin Neurosci 14:635–638. doi:10.1016/j.jocn.2006.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Gilchrist A, Solomon N, Erickson D, Sikand A, Bauer KA, Kruskall MS, Kocher O (2001) Automated detection of the G20210A prothrombin mutation using the LCx microparticle enzyme immunoassay. Clin Chim Acta 314:249–254. doi:10.1016/S0009-8981(01)00655-6

    Article  CAS  PubMed  Google Scholar 

  23. Tinmouth AT, Semple E, Shehata N, Branch DR (2006) Platelet immunopathology and therapy: a Canadian Blood Services Research and Development Symposium. Transfus Med Rev 20:294–314. doi:10.1016/j.tmrv.2006.05.008

    Article  PubMed  Google Scholar 

  24. Laule M, Cascorbi I, Stangl V, Bielecke C, Wernecke KD, Mrozikiewicz PM, Felix SB, Roots I, Baumann G, Stangl K (1999) A1/A2 polymorphism of glycoprotein IIIa and association with excess procedural risk for coronary catheter interventions: a case-controlled study. Lancet 353:708–712. doi:10.1016/S0140-6736(98)07257-2

    Article  CAS  PubMed  Google Scholar 

  25. Sajid M, Vijayan KV, Souza S, Bray PF (2002) PlA polymorphism of integrin beta 3 differentially modulates cellular migration on extracellular matrix proteins. Arterioscler Thromb Vasc Biol 22:1984–1989. doi:10.1161/01.ATV.0000043664.48689.7F

    Article  CAS  PubMed  Google Scholar 

  26. Watkins NA, Schaffner-Reckinger E, Allen DL, Howkins GJ, Brons NH, Smith GA, Metcalfe P, Murphy MF, Kieffer N, Ouwehand WH (2002) HPA-1a phenotype-genotype discrepancy reveals a naturally occurring Arg93Gln substitution in the platelet beta 3 integrin that disrupts the HPA-1a epitope. Blood 99:1833–1839. doi:10.1182/blood.V99.5.1833

    Article  CAS  PubMed  Google Scholar 

  27. Blasiak J, Smolarz B (2000) Plasminogen activator inhibitor-1 (PAI-1) gene 4G/5G promoter polymorphism is not associated with breast cancer. Acta Biochim Pol 47:191–199

    CAS  PubMed  Google Scholar 

  28. Bucková D, Izakovicová Hollá L, Vácha J (2002) Polymorphism 4G/5G in the plasminogen activator inhibitor-1 (PAI-1) gene is associated with IgE-mediated allergic diseases and asthma in the Czech population. Allergy 57:446–448. doi:10.1034/j.1398-9995.2002.03582.x

    Article  PubMed  Google Scholar 

  29. Burzotta F, Iacoviello L, Di Castelnuovo A, Zamparelli R, D’Orazio A, Amore C, Schiavello R, Donati MB, Maseri A, Possati G, Andreotti F (2003) 4G/5G PAI-1 promoter polymorphism and acute-phase levels of PAI-1 following coronary bypass surgery: a prospective study. J Thromb Thrombolysis 16:149–154. doi:10.1023/B:THRO.0000024052.79415.62

    Article  CAS  PubMed  Google Scholar 

  30. Leopardi P, Marcon F, Caiola S, Cafolla A, Siniscalchi E, Zijno A, Crebelli R (2006) Effects of folic acid deficiency and MTHFR C677T polymorphism on spontaneous and radiation-induced micronuclei in human lymphocytes. Mutagenesis 21:327–333. doi:10.1093/mutage/gel031

    Article  CAS  PubMed  Google Scholar 

  31. Dagan E, Brik R, Broza Y, Gershoni-Baruch R (2006) Henoch-Schonlein purpura: polymorphisms in thrombophilia genes. Pediatr Nephrol 21:1117–1121. doi:10.1007/s00467-006-0155-x

    Article  PubMed  Google Scholar 

  32. Ihlemann N, Rask-Madsen C, Køber L, Torp-Pedersen C (2004) Vascular insulin response is preserved in non-diabetic patients with coronary artery disease, despite endothelial dysfunction. Scand Cardiovasc J 38:22–27. doi:10.1080/14017430310016397

    Article  CAS  PubMed  Google Scholar 

  33. DeFronzo RA, Ferrannini E (1991) Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14:173–194. doi:10.2337/diacare.14.3.173

    Article  CAS  PubMed  Google Scholar 

  34. Wang Q (2005) Molecular genetics of coronary artery disease. Curr Opin Cardiol 20:182–188. doi:10.1097/01.hco.0000160373.77190.f1

    Article  PubMed  Google Scholar 

  35. Mayer B, Erdmann J, Schunkert H (2007) Genetics and heritability of coronary artery disease and myocardial infarction. Clin Res Cardiol 96:1–7. doi:10.1007/s00392-006-0447-y

    Article  PubMed  Google Scholar 

  36. Splawski I, Shen J, Timothy KW, Vincent GM, Lehmann MH, Keating MT (1998) Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Genomics 51:86–97. doi:10.1006/geno.1998.5361

    Article  CAS  PubMed  Google Scholar 

  37. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG et al (1995) Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 332:1058–1064. doi:10.1056/NEJM199504203321603

    Article  CAS  PubMed  Google Scholar 

  38. Zerba KE, Ferrell RE, Sing CF (1998) Genetic structure of five susceptibility gene regions for coronary artery disease: disequilibria within and among regions. Hum Genet 103:346–354. doi:10.1007/s004390050828

    Article  CAS  PubMed  Google Scholar 

  39. Takeuchi F, Ochiai Y, Serizawa M, Yanai K, Kuzuya N, Kajio H, Honjo S, Takeda N, Kaburagi Y, Yasuda K, Shirasawa S, Sasazuki T, Kato N (2008) Search for type 2 diabetes susceptibility genes on chromosomes 1q, 3q and 12q. J Hum Genet 53:314–324. doi:10.1007/s10038-008-0254-6

    Article  CAS  PubMed  Google Scholar 

  40. Condra JA, Neibergs H, Wei W, Brennan MD (2007) Evidence for two schizophrenia susceptibility genes on chromosome 22q13. Psychiatr Genet 17:292–298. doi:10.1097/YPG.0b013e3281ac2345

    Article  PubMed  Google Scholar 

  41. Archacki SR, Angheloiu G, Tian XL, Tan FL, DiPaola N, Shen GQ, Moravec C, Ellis S, Topol EJ, Wang Q (2003) Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiol Genomics 15:65–74

    CAS  PubMed  Google Scholar 

  42. Kohler HP, Stickland MH, OsseiGerning N, Carter A, Mikkola H, Grant PJ (1998) Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 79:8–13

    CAS  PubMed  Google Scholar 

  43. Franco RF, Reitsma PH, Lourenco D et al (1999) Factor XIII Val34Leu is a genetic factor involved in the aetiology of venous thrombosis. Thromb Haemost 81:676–679

    CAS  PubMed  Google Scholar 

  44. Wartiovaara U, Perola M, Mikkola H et al (1999) Association of FXIII Val34Leu with decreased risk of myocardial infarction in Finnish males. Atherosclerosis 142:295–300. doi:10.1016/S0021-9150(98)00241-X

    Article  CAS  PubMed  Google Scholar 

  45. Kohler HP, Ariens RA, Whitaker P, Grant PJ (1998) A common coding polymorphism in the FXIII A-subunit gene (FXIIIVal34Leu) affects cross-linking activity. Thromb Haemost 80:704

    CAS  PubMed  Google Scholar 

  46. Anwar R, Gallivan L, Edmonds SD, Markham AF (1999) Genotype/phenotype correlations for coagulation factor XIII: specific normal polymorphisms are associated with high or low factor XIII specific activity. Blood 93:897–905

    CAS  PubMed  Google Scholar 

  47. Kangsadalampai S, Board PG (1998) The Val34Leu polymorphism in the A subunit of coagulation factor XIII contributes to the large normal range in activity and demonstrates that the activation peptide plays a role in catalytic activity. Blood 92:2766–2770

    CAS  PubMed  Google Scholar 

  48. Almawi WY, Ameen G, Tamim H, Finan RR, Irani-Hakime N (2004) Factor V G1691A, prothrombin G20210A, and methylenetetrahydrofolate reductase [MTHFR] C677T gene polymorphism in angiographically documented coronary artery disease. J Thromb Thrombolysis 17:199–205. doi:10.1023/B:THRO.0000040489.86029.27

    Article  CAS  PubMed  Google Scholar 

  49. Bennouar N, Allami A, Azeddoug H, Bendris A, Laraqui A, El Jaffali A, El Kadiri N, Benzidia R, Benomar A, Fellat S, Benomar M (2007) Thermolabile Methylenetetrahydrofolate Reductase C677T Polymorphism and Homocysteine Are Risk Factors for Coronary Artery Disease in Moroccan Population. J Biomed Biotechnol 2007(1):80687

    PubMed  Google Scholar 

  50. Anderson JL, King GJ, Thomson MJ, Todd M, Bair TL, Muhlestein JB, Carlquist JF (1997) A mutation in the methylenetetrahydrofolate reductase gene is not associated with increased risk for coronary artery disease or myocardial infarction. J Am Coll Cardiol 30:1206–1211. doi:10.1016/S0735-1097(97)00310-0

    Article  CAS  PubMed  Google Scholar 

  51. Ma J, Stampfer MJ, Hennekens CH, Frosst P, Selhub J, Horsford J, Malinow MR, Willett WC, Rozen R (1996) Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians. Circulation 94:2410–2416

    CAS  PubMed  Google Scholar 

  52. Zheng YZ, Tong J, Do XP, Pu XQ, Zhou BT (2000) Prevalence of methylenetetrahydrofolate reductase C677T and its association with arterial and venous thrombosis in the Chinese population. Br J Haematol 109:870–874. doi:10.1046/j.1365-2141.2000.02112.x

    Article  CAS  PubMed  Google Scholar 

  53. Brilakis ES, Berger PB, Ballman KV, Rozen R (2003) Methylenetetrahydrofolate reductase (MTHFR) 677C > T and methionine synthase reductase (MTRR) 66A > G polymorphisms: association with serum homocysteine and angiographic coronary artery disease in the era of flour products fortified with folic acid. Atherosclerosis 168:315–322. doi:10.1016/S0021-9150(03)00098-4

    Article  CAS  PubMed  Google Scholar 

  54. Martinelli N, Trabetti E, Pinotti M, Olivieri O, Sandri M, Friso S, Pizzolo F, Bozzini C, Caruso PP, Cavallari U, Cheng S, Pignatti PF, Bernardi F, Corrocher R, Girelli D (2008) Combined effect of hemostatic gene polymorphisms and the risk of myocardial infarction in patients with advanced coronary atherosclerosis. PLoS ONE 3(2):e1523

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Var.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Var, A., Ütük, O., Akçalı, S. et al. Impact of hemostatic gene single point mutations in patients with non-diabetic coronary artery disease. Mol Biol Rep 36, 2235–2243 (2009). https://doi.org/10.1007/s11033-008-9439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9439-5

Keywords

Navigation