Skip to main content

Advertisement

Log in

Molecular characterization and expression pattern of AFPIV during embryogenesis in gibel carp(Carassiu auratus gibelio)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As a new type of AFPs, AFPIV has been firstly identified in longhorn sculpin (Myoxocephalus octodecimspinosus), and in recent years, its cDNA and amino acid sequence have been reported, and its pancreatic synthesis has been firstly reported in polar fish. However, its expression patterns during fish embryogenesis have not been elucidated yet. By differential screening, we cloned the CagAFPIV in gibel carp, Carassius auratus gibelio, demonstrated its predominant expression during embryogenesis. RT-PCR detection revealed that CagAFPIV was first transcribed from blastula stage and kept a high level during embryogenesis and declined remarkably in hatched larva. In situ hybridization revealed that CagAFPIV transcripts were firstly distributed over the margin and marginal blastomere in blastula stage embryos, at the early-gastrula stage the positive signals distributed in the marginal cells and the internalization cells, and later restricted to the cells the yolk syncytial layer (YSL) from later gastrula stage to larva stage. Consistently, the CagAFPIV protein also kept a high level during embryogenesis, and the high protein level retained some days after the larva hatched. Our work, for the first time, revealed the dynamic expression and distribution of CagAFPIV during embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFPIV:

Antifreeze type IV protein

CagAFPIV :

Carassius auratus gibelio antifreeze type IV protein

CagApo-14 :

Carassius auratus gibelio Apo-14

Cagfetuin-B :

Carassius auratus gibelio fetuin-B

nt:

Nucleotide

ORF:

Open reading frame

UTR:

Untranslated region

SMART:

Switch mechanism at the 5′ end of RNA templates

PBS:

Phosphate saline buffer

FITC:

Fluorescein isothiocyanate

HE:

Hematoxylin and Eosin

References

  1. Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55:271–283. doi:10.1007/s000180050289

    Article  PubMed  CAS  Google Scholar 

  2. Harding MM, Ward LG, Haymet AD (1999) Type I “antifreeze” proteins. Structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem 264:653–665. doi:10.1046/j.1432-1327.1999.00617.x

    Article  PubMed  CAS  Google Scholar 

  3. Gong Z, Ewart KV, Hu Z, Fletcher GL, Hew CL (1996) Skin antifreeze protein genes of the winter flounder, Pleuronectes americanus, encode distinct and active polypeptides without the secretory signal and pro-sequences. J Biol Chem 271:4106–4112. doi:10.1074/jbc.271.32.19037

    Article  PubMed  CAS  Google Scholar 

  4. Evans RP, Fletcher GL (2005) Type I antifreeze proteins expressed in snailfish skin are identical to their plasma counterparts. FEBS J 272:5327–5336. doi:10.1111/j.1742-4658.2005.04929.x

    Article  PubMed  CAS  Google Scholar 

  5. Davies PL, Sykes BD (1997) Antifreeze proteins. Curr Opin Struct Biol 7:828–834. doi:10.1016/S0959-440X(97)80154-6

    Article  PubMed  CAS  Google Scholar 

  6. Davies PL, Fletcher GL, Hew CL (1999) In: Storey K (ed) Environmental stress and gene regulation. Bios Scientific Publishers Ltd. Oxford, pp 61–80

  7. Denga G, Andrews DW, Laursen RA (1997) Laursen amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin, Myoxocephalus octodecimspinosis. FEBS Lett 402:17–20. doi:10.1016/S0014-5793(96)01466-4

    Article  Google Scholar 

  8. Deng G, Laursen RA (1998) Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta 1388:305–314

    PubMed  CAS  Google Scholar 

  9. Zhao Z, Deng G, Lui Q, Laursen RA (1998) Cloning and sequencing of cDNA encoding the LS-12 antifreeze protein in the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta 1382:177–180

    PubMed  CAS  Google Scholar 

  10. Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390. doi:10.1146/annurev.physiol.63.1.359

    Article  PubMed  CAS  Google Scholar 

  11. Cheng CH, Cziko PA, Evans CW (2006) Nonhepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance. Proc Natl Acad Sci USA 103(27):10491–10496. doi:10.1073/pnas.0603796103

    Article  PubMed  CAS  Google Scholar 

  12. Low WK, Lin Q, Stathakis C, Miao M, Fletcher GL, Hew CL (2001) Isolation and characterization of skin-type, Type I antifreeze polypeptides from the Longhorn Sculpin, Myoxocephalus octodecemspinosus. J Biol Chem 276(15):11582–11589. doi:10.1074/jbc.M009293200

    Article  PubMed  CAS  Google Scholar 

  13. Evans RP, Fletcher GL (2004) Isolation and purification of antifreeze proteins from skin tissues of snailfish, cunner and sea raven. Biochim Biophys Acta 1700:209–217

    PubMed  CAS  Google Scholar 

  14. Gui JF, Liang SC, Zhu LF, Jiang YG (1993) Discovery of two different reproductive development modes of the eggs of artificial multiple tetraploid allogynogenetic silver crucian carp. Chin Sci Bull 38:332–337

    Google Scholar 

  15. Zhou L, Wang Y, Gui JF (2000) Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J Mol Evol 51:498–506

    PubMed  CAS  Google Scholar 

  16. Xie J, Wen JJ, Chen B, Gui JF (2001) Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps. Gene 271:109–116. doi:10.1016/S0378-1119(01)00491-7

    Article  PubMed  CAS  Google Scholar 

  17. Dong CH, Yang ST, Yang ZA, Zhang L, Gui JF (2004) A C-type lectin associated and translocated with cortical granules during oocyte maturation and egg fertilization in fish. Dev Biol 265:341–354. doi:10.1016/j.ydbio.2003.08.028

    Article  PubMed  CAS  Google Scholar 

  18. Yang L, Gu JF (2004) Positive selection on multiple antique allelic lineages of transferrin in the polyploid Carassius auratus. Mol Biol Evol 21:1264–1277. doi:10.1093/molbev/msh121

    Article  PubMed  CAS  Google Scholar 

  19. Liu JX, Gui JF (2005) Expression pattern and developmental behaviour of cellular nucleic acid-binding protein (CNBP) during folliculogenesis and oogenesis in fish. Gene 356:181–192. doi:10.1016/j.gene.2005.04.035

    Article  PubMed  CAS  Google Scholar 

  20. Liu JX, Zhai YH, Geng FS, Xia JH, Gui JF (2008) Molecular characterization and expression pattern of Fetuin-B in Gibel Carp (Carassiu auratus gibelio). Biochem Genet 46(9–10):620–633

    Article  PubMed  CAS  Google Scholar 

  21. Xia JH, Liu JX, Zhou L, Li Z, Gui JF (2008) Apo-14 is required for digestive system organogenesis during fish embryogenesis and larval development. Int J Dev Biol 52(8):1089–1098

    Article  PubMed  CAS  Google Scholar 

  22. Jun Yin, Xia JH, Du XZ, Liu J, Zhou L, Hong YH, Gui JF (2007) Developmental expression of CagMdkb during gibel carp embryogenesis. Int J Dev Biol 51:761–769. doi:10.1387/ijdb.072346jy

    Article  Google Scholar 

  23. Liu JX, Shi YH, Gui JF (2005) Screen of differentially expressed genes at gastrula stage during embryogenesis of gibel carp. Acta Hydrobiol Sina 29:359–365

    Google Scholar 

  24. Yang ZA, Liu NA, Lin S (2001) A zebrafish forebrain-specific zinc finger gene can induce ectopic dlx2 and dlx6 expression. Dev Biol 231:138–148. doi:10.1006/dbio.2000.0139

    Article  PubMed  CAS  Google Scholar 

  25. Warga RM, Nüsslein-Volhard C (1999) Origin and development of the zebrafish endoderm. Development 126:827–838

    PubMed  CAS  Google Scholar 

  26. Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier DY (2001) Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 15:1493–1505. doi:10.1101/gad.892301

    Article  PubMed  CAS  Google Scholar 

  27. Thisse B, Wright CV, Thisse C (2000) Activin- and nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403:425–428. doi:10.1038/35000200

    Article  PubMed  CAS  Google Scholar 

  28. Griffin K, Patient R, Holder N (1995) Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 121:2983–2994

    PubMed  CAS  Google Scholar 

  29. Griffin KJP, Amacher SL, Kimmel CB, Kimelman D (1998) Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125:3379–3388

    PubMed  CAS  Google Scholar 

  30. Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals (see comments). Nature 395:181–185. doi:10.1038/26013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Major Basic Research Program (2004CB117401) and the National Natural Science Foundation of China—Youth Foundation (grant No. 30700440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Fang Gui.

Additional information

The nucleotide sequence data reported in this paper have been submitted to the GenBank under accession number: CagAFPIV (AY365004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JX., Zhai, YH. & Gui, JF. Molecular characterization and expression pattern of AFPIV during embryogenesis in gibel carp(Carassiu auratus gibelio). Mol Biol Rep 36, 2011–2018 (2009). https://doi.org/10.1007/s11033-008-9412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9412-3

Keywords

Navigation