Skip to main content
Log in

The method of single-nucleotide variations detection using capillary electrophoresis and molecular beacons

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We demonstrate that single-nucleotide variations in a DNA sequence can be detected using capillary electrophoresis (CE) and molecular beacons (MBs). In this method, the region surrounding the site of a nucleotide variation was amplified in a polymerase chain reaction, then hybridize PCR products with each of MBs. The sequences of the PCR products are different at the site of 2,044 in exon of interleukin (IL)-13 which to be identified. Through denaturation, the PCR product became single strand and hybridized with the completely complementary MB. The MB-target duplexes were separated using CE and solution-based fluorescence techniques. The results show that in each reaction a fluorescent response was elicited from the molecular beacon which was perfectly complementary to the amplified DNA, but not from the other MB whose probe sequence mismatched the target sequence. The method of CE based on MBs is able to identify single-nucleotide variations in a DNA sequence and can discriminate the genotyping of the SNP between the homo- and heteroduplexes of DNA fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sweasy JB, Lauper JM, Eckert KA (2006) DNA polymerases and human diseases. Radiat Res 166:693–714. doi:10.1667/RR0706.1

    Article  PubMed  CAS  Google Scholar 

  2. Daniels G (2005) The molecular genetics of blood group polymorphism. Transpl Immunol 14:143–153. doi:10.1016/j.trim.2005.03.003

    Article  PubMed  CAS  Google Scholar 

  3. Fang X, Mi Y, Li JJ, Beck T, Schuster S, Tan W (2002) Molecular beacons: fluorogenic probes for living cell study. Cell Biochem Biophys 37:71–81. doi:10.1385/CBB:37:2:071

    Article  PubMed  CAS  Google Scholar 

  4. Shi MM (2001) Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 47:164–172

    PubMed  CAS  Google Scholar 

  5. Tan W, Wang K, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8:547–553. doi:10.1016/j.cbpa.2004.08.010

    Article  PubMed  CAS  Google Scholar 

  6. Graves PE, Kabesch M, Halonen M, Holberg CJ, Baldini M, Fritzsch C et al (2000) A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol 105:506–513. doi:10.1067/mai.2000.104940

    Article  PubMed  CAS  Google Scholar 

  7. Pantelidis P, Jones MG, Welsh KI, Taylor AN, du Bois RM (2000) Identification of four novel interleukin-13 gene polymorphisms. Genes Immun 1:341–345. doi:10.1038/sj.gene.6363679

    Article  PubMed  CAS  Google Scholar 

  8. Heinzmann A, Mao XQ, Akaiwa M, Kreomer RT, Gao PS, Ohshima K et al (2000) Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 9:549–559. doi:10.1093/hmg/9.4.549

    Article  PubMed  CAS  Google Scholar 

  9. Howard TD, Whittaker PA, Zaiman AL, Koppelman GH, Xu J, Hanley MT et al (2001) Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am J Respir Cell Mol Biol 25:377–384

    PubMed  CAS  Google Scholar 

  10. Wang M, Xing ZM, Lu C, Ma YX, Yu DL, Yan Z et al (2003) A common IL-13 Arg130Gln single nucleotide polymorphism among Chinese atopy patients with allergic rhinitis. Hum Genet 113:387–390. doi:10.1007/s00439-003-1001-x

    Article  PubMed  CAS  Google Scholar 

  11. Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Curr Allergy Asthma Rep 4:123–131. doi:10.1007/s11882-004-0057-6

    Article  PubMed  Google Scholar 

  12. Churruca E, Girbau C, Martínez I, Mateo E, Alonso R, Fernández-Astorga A (2007) Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int J Food Microbiol 117:85–90. doi:10.1016/j.ijfoodmicro.2007.02.007

    Article  PubMed  CAS  Google Scholar 

  13. Zhao C, Xu G, Shi X, Ma J, Zhang Y, Lv S et al (2004) Fluorescent-based single-strand conformation polymorphism/heteroduplex capillary electrophoretic mutation analysis of the P53 gene. Anal Sci 20:1001–1005. doi:10.2116/analsci.20.1001

    Article  PubMed  CAS  Google Scholar 

  14. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. doi:10.1038/nbt0396-303

    Article  PubMed  CAS  Google Scholar 

  15. Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK (2002) Real-time monitoring of rolling-circle amplification using a modified molecular beacon design. Nucleic Acids Res 30:e66. doi:10.1093/nar/gnf065

    Article  PubMed  Google Scholar 

  16. Du M, Flanagan JH Jr, Ma Y (2007) Separation of homo- and heteroduplexes of DNA fragments with different melting temperature by capillary electrophoresis at one single temperature. J Capill Electrophor Microchip Technol 10:33–39

    PubMed  CAS  Google Scholar 

  17. Du W, Chen S, Xu Y, Chen Z, Luo Q, Liu BF (2007) Multiphoton excitation fluorescence: a versatile detection method for capillary electrophoresis. J Sep Sci 30:906–915. doi:10.1002/jssc.200600477

    Article  PubMed  CAS  Google Scholar 

  18. Ramachandran A, Zhang M, Goad D, Olah G, Malayer JR, El-Rassi Z (2003) Capillary electrophoresis and fluorescence studies on molecular beacon-based variable length oligonucleotide target discrimination. Electrophoresis 24:70–77. doi:10.1002/elps.200390033

    Article  PubMed  CAS  Google Scholar 

  19. Hopkins JF, Woodson SA (2005) Molecular beacons as probes of RNA unfolding under native conditions. Nucleic Acids Res 33:5763–5770. doi:10.1093/nar/gki877

    Article  PubMed  CAS  Google Scholar 

  20. Aalberts DP, Parman JM, Goddard NL (2003) Single-strand stacking free energy from DNA beacon kinetics. Biophys J 84:3212–3217

    Article  PubMed  CAS  Google Scholar 

  21. Dinelli G, Bonetti A, Marotti I, Minelli M, Navarrete-Casas M, Segura-Carretero A et al (2006) Quantitative-competitive polymerase chain reaction coupled with slab gel and capillary electrophoresis for the detection of roundup ready soybean and maize. Electrophoresis 27:4029–4038. doi:10.1002/elps.200500397

    Article  PubMed  CAS  Google Scholar 

  22. Funes-Huacca M, Regitano LC, Mueller O, Carrilho E (2004) Semiquantitative determination of Alicyclobacillus acidoterrestris in orange juice by reverse-transcriptase polymerase chain reaction and capillary electrophoresis–laser induced fluorescence using microchip technology. Electrophoresis 25:3860–3864. doi:10.1002/elps.200406105

    Article  PubMed  CAS  Google Scholar 

  23. Ptolemy AS, Britz-McKibbin P (2006) Sample preconcentration with chemical derivatization in capillary electrophoresis. Capillary as preconcentrator, microreactor and chiral selector for high-throughput metabolite screening. J Chromatogr A 1106:7–18. doi:10.1016/j.chroma.2005.11.012

    Article  PubMed  CAS  Google Scholar 

  24. Hung CC, Chien SC, Lin CY, Chang CH, Chang YF, Jong YJ et al (2007) Use of multiplex PCR and CE for gene dosage quantification and its biomedical applications for SMN, PMP22, and alpha-globin genes. Electrophoresis 28:2826–2834. doi:10.1002/elps.200600647

    Article  PubMed  CAS  Google Scholar 

  25. Gavrilov DN, Kosobokova O, Khozikov V, Stepukhovitch A, Gorfinkel V (2005) Electrophoresis in capillary cells with detection gap. Electrophoresis 26:3430–3437. doi:10.1002/elps.200500237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, W., Liu, Y. et al. The method of single-nucleotide variations detection using capillary electrophoresis and molecular beacons. Mol Biol Rep 36, 1903–1908 (2009). https://doi.org/10.1007/s11033-008-9397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9397-y

Keywords

Navigation