Skip to main content
Log in

Elevated expression of Runx2 as a key parameter in the etiology of osteosarcoma

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To understand the molecular etiology of osteosarcoma, we isolated and characterized a human osteosarcoma cell line (OS1). OS1 cells have high osteogenic potential in differentiation induction media. Molecular analysis reveals OS1 cells express the pocket protein pRB and the runt-related transcription factor Runx2. Strikingly, Runx2 is expressed at higher levels in OS1 cells than in human fetal osteoblasts. Both pRB and Runx2 have growth suppressive potential in osteoblasts and are key factors controlling competency for osteoblast differentiation. The high levels of Runx2 clearly suggest osteosarcomas may form from committed osteoblasts that have bypassed growth restrictions normally imposed by Runx2. Interestingly, OS1 cells do not exhibit p53 expression and thus lack a functional p53/p21 DNA damage response pathway as has been observed for other osteosarcoma cell types. Absence of this pathway predicts genomic instability and/or vulnerability to secondary mutations that may counteract the anti-proliferative activity of Runx2 that is normally observed in osteoblasts. We conclude OS1 cells provide a valuable cell culture model to examine molecular events that are responsible for the pathologic conversion of phenotypically normal osteoblast precursors into osteosarcoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim KM, Salovaara R, Mecklin JP, Järvinen HJ, Aaltonen LA, Shibata D (2002) PolyA deletions in hereditary nonpolyposis colorectal cancer: mutations before a gatekeeper. Am J Pathol 160:1503–1506

    PubMed  CAS  Google Scholar 

  2. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7(11):967–976. doi:10.1593/neo.05394

    Article  PubMed  CAS  Google Scholar 

  3. Blyth K, Cameron ER, Neil JC (2005) The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5:376–387. doi:10.1038/nrc1607

    Article  PubMed  CAS  Google Scholar 

  4. Kansara M, Thomas DM (2007) Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26:1–18. doi:10.1089/dna.2006.0505

    Article  PubMed  CAS  Google Scholar 

  5. Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol 25:8581–8591. doi:10.1128/MCB.25.19.8581-8591.2005

    Article  PubMed  CAS  Google Scholar 

  6. Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP, Waring P, McArthur GA, Walkley CR, Holloway AJ, Diyagama D, Grim JE, Clurman BE, Bowtell DD, Lee JS, Gutierrez GM, Piscopo DM, Carty SA, Hinds PW (2004) Terminal osteoblast differentiation, mediated by Runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol 167:925–934. doi:10.1083/jcb.200409187

    Article  PubMed  CAS  Google Scholar 

  7. Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC, Hinds PW (2001) The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell 8:303–316. doi:10.1016/S1097-2765(01)00327-6

    Article  PubMed  CAS  Google Scholar 

  8. Gupta S, Luong MX, Bleuming SA, Miele A, Luong M, Young D, Knudsen ES, Van Wijnen AJ, Stein JL, Stein GS (2003) Tumor suppressor pRB functions as a co-repressor of the CCAAT displacement protein (CDP/cut) to regulate cell cycle controlled histone H4 transcription. J Cell Physiol 196:541–556. doi:10.1002/jcp.10335

    Article  PubMed  CAS  Google Scholar 

  9. Harrington EA, Bruce JL, Harlow E, Dyson N (1998) pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc Natl Acad Sci USA 95:11945–11950. doi:10.1073/pnas.95.20.11945

    Article  PubMed  CAS  Google Scholar 

  10. Mayhew CN, Bosco EE, Fox SR, Okaya T, Tarapore P, Schwemberger SJ, Babcock GF, Lentsch AB, Fukasawa K, Knudsen ES (2005) Liver-specific pRB loss results in ectopic cell cycle entry and aberrant ploidy. Cancer Res 65:4568–4577. doi:10.1158/0008-5472.CAN-04-4221

    Article  PubMed  CAS  Google Scholar 

  11. Fuchs B, Pritchard DJ (2002) Etiology of osteosarcoma. Clin Orthop Relat Res 397:40–52. doi:10.1097/00003086-200204000-00007

    Article  PubMed  Google Scholar 

  12. Galindo M, Pratap J, Young DW, Hovhannisyan H, Im HJ, Choi JY, Lian JB, Stein JL, Stein GS, van Wijnen AJ (2005) The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J Biol Chem 280:20274–20285. doi:10.1074/jbc.M413665200

    Article  PubMed  CAS  Google Scholar 

  13. Lian JB, Javed A, Zaidi SK, Lengner C, Montecino M, van Wijnen AJ, Stein JL, Stein GS (2004) Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr 14:1–41. doi:10.1615/CritRevEukaryotGeneExpr.v14.i12.10

    Article  PubMed  CAS  Google Scholar 

  14. Pratap J, Galindo M, Zaidi SK, Vradii D, Bhat BM, Robinson JA, Choi JY, Komori T, Stein JL, Lian JB, Stein GS, van Wijnen AJ (2003) Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63:5357–5362

    PubMed  CAS  Google Scholar 

  15. Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A (2006) Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J Biol Chem 281:7118–7128. doi:10.1074/jbc.M508162200

    Article  PubMed  CAS  Google Scholar 

  16. Shen R, Wang X, Drissi H, Liu F, O’Keefe RJ, Chen D (2006) Cyclin D1-cdk4 induces runx2 ubiquitination and degradation. J Biol Chem 281:16347–16353. doi:10.1074/jbc.M603439200

    Article  PubMed  CAS  Google Scholar 

  17. Gartel AL, Feliciano C, Tyner AL (2003) A new method for determining the status of p53 in tumor cell lines of different origin. Oncol Res 13:405–408

    PubMed  Google Scholar 

  18. Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209:13–20. doi:10.1002/jcp.20689

    Article  PubMed  CAS  Google Scholar 

  19. Chen X, Ko LJ, Jayaraman L, Prives C (1996) p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 10:2438–2451. doi:10.1101/gad.10.19.2438

    Article  PubMed  CAS  Google Scholar 

  20. Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN (2006) Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172(6):909–921. doi:10.1083/jcb.200508130

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Kua HY, Hu Y, Guo K, Zeng Q, Wu Q, Ng HH, Karsenty G, de Crombrugghe B, Yeh J, Li B (2006) p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol 172(1):115–125. doi:10.1083/jcb.200507106

    Article  PubMed  CAS  Google Scholar 

  22. Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB, Yoshida M, Stein GS, Li X (2002) Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22:7982–7992. doi:10.1128/MCB.22.22.7982-7992.2002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yoshiaki Ito and Kosei Ito, Institute of Molecular and Cell Biology, Singapore, for providing the Runx2 antibody used in our studies and all the members of the laboratories participating in the Singapore Osteobiology group for stimulating discussions. In particular we thank Ren Xia Fei, Mario Galindo, Nadiya Teplyuk, Kakoli Das, David Leong, Dietmar Hutmacher, Lee Eng Hin, Wong Hee Kit, Jane Lian and Janet Stein for stimulating discussions. This study was co-supported by funding from NIH (grant R01 AR049069 to AvW and grant P01 CA082834 to GS) and Singapore Cancer Syndicate, A*STAR (grants MN-005 and MN-077, to MST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saminathan S. Nathan or Andre J. van Wijnen.

Additional information

Each author certifies that his or her institution has approved the human protocol for this investigation that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathan, S.S., Pereira, B.P., Zhou, Yf. et al. Elevated expression of Runx2 as a key parameter in the etiology of osteosarcoma. Mol Biol Rep 36, 153–158 (2009). https://doi.org/10.1007/s11033-008-9378-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9378-1

Keywords

Navigation