Skip to main content
Log in

Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The six most toxic Pakistani isolates of Bacillus thuringiensis (SBS Bt-23, 29, 34, 37, 45 and 47), which were previously characterized for their toxicity against larvae of mosquito, Anopheles stephensi, and the presence of cry4 gene, were used for cry11 (cry4D) gene amplification. A 1.9-kb DNA fragment of cry11 gene was PCR-amplified, cloned in expression vector pT7-7, and then used for transformation of E. coli BL21C. The optimum expression was obtained with 1 mM IPTG at 37°C for 3 h. This gene showed different percentage homologies at protein level with scattered mutations in the toxic region. Biotoxicity assay of recombinant protein showed that Cry11 of SBS Bt 45 (DAB Bt 5) was the most toxic protein against third instar larvae of mosquito, A. stephensi, and has potentiality of a bioinsecticide against mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schnepf HE, Cricmore N, Vanrie J, Lereclus D, Baum J, Feitelson J, Zfider DR, Dea DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    PubMed  CAS  Google Scholar 

  2. Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  3. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed  CAS  Google Scholar 

  4. De-Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199

    Article  PubMed  CAS  Google Scholar 

  5. Aronson AI, Beckman W, Dunn P (1986) Bacillus thuringiensis and related insect pathogens. Microbiol Rev 50:1–24

    PubMed  CAS  Google Scholar 

  6. Gill SS, Cowless EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615–636

    Article  PubMed  CAS  Google Scholar 

  7. Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta endotoxin with different insect specificity. Biochim Biophys Acta 924:509–518

    CAS  Google Scholar 

  8. Knowles BH (1994) Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv Insect Physiol 24:275–308

    Article  CAS  Google Scholar 

  9. Fernandez LE, Perez C, Segovia L, Rodriguez MH, Gill SS, Bravo A, Soberon M (2005) Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop alpha-8 of domain II. FEBS Lett 579:3508–3514

    Article  PubMed  CAS  Google Scholar 

  10. Soberón M, Pérez R, Núñez-valdéz M, Lorence A, Gómez I, Sánchez J, Bravo A (2000) Evidence for intermolecular interaction as a necessary step for pore-formation activity and toxicity of Bacillus thuringiensis Cry1Ab toxin. FEMS Microbiol Lett 191:221–225

    Article  PubMed  Google Scholar 

  11. Sayyed AH, Haward R, Herrero S, Ferre′ J, Wright DJ (2000) Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Appl Environ Microbiol 66:1509–1516

    Article  PubMed  CAS  Google Scholar 

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  13. Kronstad JW, Schnepf HE, Whiteley HR (1983) Diversity of location for the Bacillus thuringiensis crystal protein gene. J Bacteriol 154:419–428

    PubMed  CAS  Google Scholar 

  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

  15. Prober JM, Trainer GL, Dam RJ, Bobbs FW, Robertson CW, Zagursky RJ, Cocuzz AJ, Jensen MA, Baumeister K (1987) A system for rapid DNA sequencing with fluorescent chain terminating dideoxynucleotides. Science 238:336–341

    Article  PubMed  CAS  Google Scholar 

  16. Lee LG, Connell CR, Woo SL, Cheng RD, Mcardle BF, Fuller CW, Halloran ND, Wilson RK (1992) DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments. Nucleic Acids Res 20:2417–2483

    Google Scholar 

  17. Johnson DE, Mcgaughey WH (1996) Contribution of Bacillus thuringiensis spores to toxicity of purified cry proteins towards Indian meal moth larvae. Curr Microbiol 33:54–59

    Article  PubMed  CAS  Google Scholar 

  18. Donovan WP, Dankocsik C, Gilbert MP (1988) Molecular characterization of a gene encoding a 72-kDa mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. J Bacteriol 170:4732–4738

    PubMed  CAS  Google Scholar 

  19. Fedrici BA, Luthy P, Ibarra JE (1990) The parasporal body of Bacillus thuringiensis subsp. israelensis structure, protein composition and toxicity. In: De Barjac H, Sutherland D (eds) Bacterial control of mosquitoes, blackflies biochemistry. Genetics, applications of Bacillus thuringiensis, Bacillus sphaericus. Rutgers University Press, New Brunswick, pp 16–44

    Google Scholar 

  20. Ben-Dov E, Boussiba S, Zaritsky A (1995) Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177(10):2851–2857

    PubMed  CAS  Google Scholar 

  21. Brizzard BL, Schnepf HE, Kronstad JW (1991) Expression of cryIB crystal protein gene of Bacillus thuringiensis. Mol Gen Genet 231:59–64

    Article  PubMed  CAS  Google Scholar 

  22. Ge AZ, Pfister RM, Dean DH (1990) Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. Gene 93:49–54

    Article  PubMed  CAS  Google Scholar 

  23. Mcpherson SA, Perlack FJ, Fuchs RL, Marrone PG, Lavrik PB, Fischhoff DA (1988) Characterization of the coleopteran-specific protein gene of Bacillus thuringiensis var tenebrionsis. Biotechnology 6:61–66

    Article  CAS  Google Scholar 

  24. Sanchis V, Lerclus D, Menou G, Chaufaux S, Lecadet MM (1989) Nucleotide sequence and analysis of N-terminal coding region of Spodoptera-active S-endotoxin gene of Bacillus thuringiensis aizawai 7.29. Mol Microbiol 3:229–238

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu M, Oshie K, Nakamura KY, Takada Y, Oeda K, Ohkawa H (1988) Cloning and expression in E. coli of the 135-kDa insecticidal protein gene from Bacillus thuringiensis subsp. aizawai IPL7. Agric Biol Chem 52:1565–1573

    CAS  Google Scholar 

  26. Aronson AI (1995) The protoxin composition of Bacillus thuringiensis insecticidal inclusion affects solubility and toxicity. Appl Environ Microbiol 61:4057–4060

    PubMed  CAS  Google Scholar 

  27. Bosch D, Schipper B, Van Der Kleij H, De Maagd RA, Stiekema WJ (1994) Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology 12:915–918

    Article  PubMed  CAS  Google Scholar 

  28. Caramori T, Albertini AM, Galzzi A (1991) In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin encoding genes. Gene 98:37–44

    Article  PubMed  CAS  Google Scholar 

  29. De-Maagd PH, Larsen HD, Hansen BH, Bresciani J, Jørgensen K (1996) Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett Appl Microbiol 23:146–150

    Google Scholar 

  30. Ge AZ, Rivers D, Miline R, Dean DH (1991) Functional domains of Bacillus thuringiensis insecticidal crystal proteins. J Biol Chem 266(27):17954–17958

    PubMed  CAS  Google Scholar 

  31. Vázquez R, Prieto D, Olóriz MI, De La Riva GA, Selman-Housein G (1995) Heterologous expression of recombinant d-endotoxins from Bacillus thuringiensis in E. coli: comparative study in three transcriptional systems. Rev Lat-Am Microbiol 37:237–244

    Google Scholar 

  32. Yamahiwa M, Ogawa R, Yasuda K, Natsuyama H, Sen K, Sakai H (2002) Active form of dipteran-specific insecticidal protein Cry11A produced by Bacillus thuringiensis subsp. israelensis. Biosci Biotechnol Biochem 66:516–522

    Article  Google Scholar 

  33. Gutierrez P, Alzate O, Orduz S (2001) A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp. medellin Cry 11Bb toxin deduced by homology modelling. Mem Inst Oswaldo Cruz 96:357–364

    PubMed  CAS  Google Scholar 

  34. Sramala I, Uawithya P, Chanama U, Leetachewa S, Krittanai C, Katzenmeier G, Panyim S, Angsuthanasombat C (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin affect inclusion solubility and larvicidal activity. J Biochem Mol Biol Biophys 4:187–193

    CAS  Google Scholar 

  35. Delécluse A, Barloy F, Thiéry I (1995) Mosquitocidal toxins from various Bacillus thuringiensis and Clostridium bifermenstans. In: Feng T-Y, Chak K-F, Smith R, Yamamoto T, Margalit J, Chilcott C, Rose R (eds) Bacillus thuringiensis biotechnology and environmental benefits. Hua Shiang Yuang Publishing Co., Taipei, pp 125–141

    Google Scholar 

  36. Ravoahangimalala O, Charles J-F, Shoeller-Raccaud J (1993) Immunological localization of Bacillus thuringiensis serovar israelensis toxins in midgut cells of intoxicated Anopheles gambiae larvae (Diptera: Culicidae). Res Microbiol 144:271–278

    Article  PubMed  CAS  Google Scholar 

  37. Chilcott CN, Wigley PJ, Broadwell AH, Park DJ, Ellar DJ (1998) Activities of Bacillus thuringiensis insecticidal crystal proteins Cyt1Aa and Cyt2Aa against three species of sheep Blowfly. Appl Environ Microbiol 64:4060–4061

    PubMed  CAS  Google Scholar 

  38. Dai SM, Gill SS (1993) In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. israelensis CryIVD protein by Culex quinquefasciatus larval midgut proteases. Insect Biochem Mol Biol 23:273–283

    Article  PubMed  CAS  Google Scholar 

  39. Borovsky D (1986) Proteolytic enzymes and blood digestion in the mosquito, Culex nigripalpus. Arch Insect Biochem Physiol 3:147–160

    Article  CAS  Google Scholar 

  40. Yang YJ, Davies DM (1971) Trypsin and chymotrypsin during metamorphosis in Aedes aegypti and properties of the chymotrypsin. J Insect Physiol 17:117–131

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rauf Shakoori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukhari, D.A.A., Shakoori, A.R. Cloning and expression of Bacillus thuringiensis cry11 crystal protein gene in Escherichia coli . Mol Biol Rep 36, 1661–1670 (2009). https://doi.org/10.1007/s11033-008-9366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9366-5

Keywords

Navigation