Skip to main content
Log in

Cloning, expression and subcellular distribution of a Rana grylio virus late gene encoding ERV1 homologue

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang QY, Li ZQ, Jiang YL, Liang SC, Gui JF (1996) Preliminary studies on virus isolation and cell infection from disease frogs Rana grylio. Acta Hydrobiol Sin 20:390–392

    Google Scholar 

  2. Zhang QY, Li ZQ, Gui JF (1999) Studies on morphogenesis and cellular interactions of Rana grylio virus in an infected fish cell line. Aquaculture 175:185–197. doi:10.1016/S0044-8486(99)00041-1

    Article  Google Scholar 

  3. Zhang QY, Xiao F, Li ZQ, Gui JF, Mao JH, Chinchar VG (2001) Characterization of an iridovirus from the cultured pig frog (Rana grylio) with lethal syndrome. Dis Aquat Organ 48:27–36. doi:10.3354/dao048027

    Article  CAS  Google Scholar 

  4. Zhang QY, Zhao Z, Xiao F, Li ZQ, Gui JF (2006) Molecular characterization of three Rana grylio virus (RGV) isolates and Paralichthys olivaceus lymphocystis disease virus (LCDV-C) in iridoviruses. Aquaculture 251:1–10. doi:10.1016/j.aquaculture.2005.05.012

    Article  CAS  Google Scholar 

  5. Chinchar VG (2002) Ranaviruses (family Iridoviridae): emerging cold-blooded killers. Arch Virol 147:447–470. doi:10.1007/s007050200000

    Article  PubMed  CAS  Google Scholar 

  6. D’Costa SM, Yao H, Bilimoria SL (2001) Transcription and temporal cascade in Chilo iridescent virus infected cells. Arch Virol 146:2165–2178. doi:10.1007/s007050170027

    Article  PubMed  Google Scholar 

  7. Lua DT, Yasuike M, Hirono I, Aoki T (2005) Transcription program of red sea bream iridovirus as revealed by DNA microarrays. J Virol 79:15151–15164. doi:10.1128/JVI.79.24.15151-15164.2005

    Article  PubMed  CAS  Google Scholar 

  8. Williams T, Barbosa-Solomieu V, Chinchar VG (2005) Adecade of advances in iridovirus research. Adv Virus Res 65:173–248. doi:10.1016/S0065-3527(05)65006-3

    Article  PubMed  CAS  Google Scholar 

  9. Delhon G, Tulman ER, Afonso CL, Lu Z, Becnel JJ, Moser BA et al (2006) Genome of invertebrate iridescence virus type 3 (Mosquito iridescent virus). J Virol 80:8439–8449. doi:10.1128/JVI.00464-06

    Article  PubMed  CAS  Google Scholar 

  10. Eaton HE, Metcalf J, Penny E, Tcherepanov V, Upton C, Brunetti CR (2007) Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes. Virol J 4:11. doi:10.1186/1743-422X-4-11

    Article  PubMed  Google Scholar 

  11. Hagiya M, Francavilla A, Polimeno L, Ihara I, Sakai H, Seki T et al (1994) Cloning and sequence analysis of the rat augmenter of liver regeneration (ALR) gene: expression of biologically active recombinant ALR and demonstration of tissue distribution. Proc Natl Acad Sci USA 91:8142–8146. doi:10.1073/pnas.91.17.8142

    Article  PubMed  CAS  Google Scholar 

  12. Lisowsky T (1992) Dual function of a new nuclear gene for oxidative phosphorylation and vegetative growth in yeast. Mol Gen Genet 232:58–64. doi:10.1007/BF00299137

    Article  PubMed  CAS  Google Scholar 

  13. Lisowsky T, Weinstatsaslow DL, Barton N, Reeders ST, Schneider MC (1995) A new human gene located in the PKD1 region of chromosome 16 is a functional homologue to ERV1 of yeast. Genomics 29:690–697. doi:10.1006/geno.1995.9950

    Article  PubMed  CAS  Google Scholar 

  14. Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271. doi:10.1146/annurev.bi.54.070185.001321

    Article  PubMed  CAS  Google Scholar 

  15. Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL (1999) The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 73:533–552

    PubMed  CAS  Google Scholar 

  16. Lewis T, Zsak L, Burrage TG, Lu Z, Kutish GF, Neilan JG et al (2000) An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J Virol 74:1275–1285. doi:10.1128/JVI.74.3.1275-1285.2000

    Article  PubMed  CAS  Google Scholar 

  17. Fjose A, Ellingsen S, Wargelius A, Seo HC (2001) RNA interference: mechanisms and applications. Biotechnol Annu Rev 7:31–57. doi:10.1016/S1387-2656(01)07032-6

    Article  PubMed  CAS  Google Scholar 

  18. Agami R (2002) RNAi and related mechanisms and their potential use for therapy. Curr Opin Chem Biol 6:829–834. doi:10.1016/S1367-5931(02)00378-2

    Article  PubMed  CAS  Google Scholar 

  19. Carmichael GG (2002) Silencing viruses with RNA. Nature 418:379–380. doi:10.1038/418379a

    Article  PubMed  CAS  Google Scholar 

  20. Huelsmann PM, Rauch P, Allers K, John MJ, Metzner KJ (2006) Inhibition of drug-resistant HIV-1 by RNA interference. Antivir Res 69:1–8. doi:10.1016/j.antiviral.2005.10.001

    Article  PubMed  CAS  Google Scholar 

  21. Dang LT, Kondo H, Hirono I, Aoki T (2008) Inhibition of red seabream iridovirus (RSIV) replication by small interfering RNA (siRNA) in a cell culture system. Antivir Res 77:142–149. doi:10.1016/j.antiviral.2007.10.007

    Article  PubMed  CAS  Google Scholar 

  22. Xie J, Lü L, Deng M, Weng S, Zhu J, Wu Y et al (2005) Inhibition of reporter gene and Iridovirus-tiger frog virus in fish cell by RNA interference. Virology 338:43–52. doi:10.1016/j.virol.2005.04.040

    Article  PubMed  CAS  Google Scholar 

  23. Tan WG, Barkman TJ, Gregory Chinchar V, Essani K (2004) Comparative genomic analyses of frog virus 3, type species of the genus Ranavirus (family Iridoviridae). Virology 323:70–84. doi:10.1016/j.virol.2004.02.019

    Article  PubMed  CAS  Google Scholar 

  24. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi:10.1093/nar/25.24.4876

    Article  Google Scholar 

  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  27. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33(Web Server issue):W557–W559

    Article  PubMed  CAS  Google Scholar 

  28. Zhao Z, Ke F, Gui JF, Zhang QY (2007) Characterization of an early gene encoding for dUTPase in Rana grylio virus. Virus Res 123:128–137. doi:10.1016/j.virusres.2006.08.007

    Article  PubMed  CAS  Google Scholar 

  29. Willis DB, Foglesong D, Granoff A (1984) Nucleotide sequence of an immediate-early FV3 gene. J Virol 53:905–912

    Google Scholar 

  30. Mao J, Tham TN, Gentry GA, Aubertin AM, Chinchar VG (1996) Cloning, sequence analysis, and expression of the major capsid protein of the iridovirus frog virus 3. Virology 216:431–436. doi:10.1006/viro.1996.0080

    Article  PubMed  CAS  Google Scholar 

  31. Du CS, Zhang QY, Li CL, Miao DL, Gui JF (2004) Induction of apoptosis in a carp leucocyte cell line infected with turbot (Scophthalmus maximus L.) rhabdovirus. Virus Res 101:119–126. doi:10.1016/j.virusres.2003.12.034

    Article  PubMed  CAS  Google Scholar 

  32. Huang XH, Huang YH, Yuan XP, Zhang QY (2006) Electron microscopic examination of the viromatrix of Rana grylio virus in a fish cell line. J Virol Methods 133:117–123. doi:10.1016/j.jviromet.2005.10.029

    Article  PubMed  CAS  Google Scholar 

  33. Coppock DL, Cina-Poppe D, Gilleran S (1998) The quiescin Q6 gene families: thioredoxin and ERV1. Genomics 54:460–468. doi:10.1006/geno.1998.5605

    Article  PubMed  CAS  Google Scholar 

  34. Ellis LBM, Saurugger P, Woodward C (1992) Identification of the three-dimensional thioredoxin motif: related structure in the ORF3 protein of the Staphylococcus aureus mer operon. Biochemistry 31:4882–4891. doi:10.1021/bi00135a020

    Article  PubMed  CAS  Google Scholar 

  35. Senkevich TG, Weisberg AS, Moss B (2000) Vaccinia virus E10R protein is associated with the membranes of intracellular mature virions and has a role in morphogenesis. Virology 278:244–252. doi:10.1006/viro.2000.0656

    Article  PubMed  CAS  Google Scholar 

  36. Senkevich TG, White CL, Koonin EV, Moss B (2002) Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc Natl Acad Sci USA 99:6667–6672. doi:10.1073/pnas.062163799

    Article  PubMed  CAS  Google Scholar 

  37. Epifano C, Krijnse-Locker J, Salas ML, Rodríguez JM, Salas J (2006) The African swine fever virus nonstructural protein pB602L is required for formation of the icosahedral capsid of the virus particle. J Virol 80:12260–12270. doi:10.1128/JVI.01323-06

    Article  PubMed  CAS  Google Scholar 

  38. Wang D, Zhang CX (2006) HearSNPV orf83 encodes a late, nonstructural protein with an active chitin-binding domain. Virus Res 117:237–243. doi:10.1016/j.virusres.2005.10.019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Major Basic Research Program (2004CB117403), the National 863 High Technology Research Foundation of China (2006AA09Z445, 2006AA100309 and 20060110A4013), the National Natural Science Foundation of China (30671616 and U0631008) and the Key Technology R & D Program of China (2006BAD03B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiya Zhang.

Additional information

The sequence reported in this paper has been deposited in GenBank with the accession number, EU239358.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, F., Zhao, Z. & Zhang, Q. Cloning, expression and subcellular distribution of a Rana grylio virus late gene encoding ERV1 homologue. Mol Biol Rep 36, 1651–1659 (2009). https://doi.org/10.1007/s11033-008-9365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9365-6

Keywords

Navigation