Skip to main content
Log in

Mutational analysis of the -10 region from the Mycobacterium tuberculosis lipF promoter

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The promoter driving expression of the Mycobacterium tuberculosis gene lipF (Rv3487c) had previously been identified as being upregulated by acidic stress. Subsequently a 59 base pair (bp) acid inducible minimal promoter region was isolated in which a putative -10 region was identified. In this study we use mutational analysis to investigate the -10 region of the lipF promoter. Mutations within this region lead to a dramatic decrease of promoter activity, while a mutation outside of this region does not affect promoter activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saviola B, Woolwine S, Bishai WR (2003) Isolation of acid-inducible genes of Mycobacterium tuberculosis with the use of recombinase-based in vivo expression technology. Infect Immun 71:1379–1388. doi:10.1128/IAI.71.3.1379-1388.2003

    Article  PubMed  CAS  Google Scholar 

  2. Fisher MA, Plikaytis BB, Shinnick TM (2002) Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184:4025–4032. doi:10.1128/JB.184.14.4025-4032.2002

    Article  PubMed  CAS  Google Scholar 

  3. Singh A, Jain S, Gupta S et al (2003) mymA operon of Mycobacterium tuberculosis: its regulation and importance in the cell envelope. FEMS Microbiol Lett 227:3–63. doi:10.1016/S0378-1097(03)00648-7

    Article  Google Scholar 

  4. O’Brien LM, Gordon SV, Roberts IS et al (1996) Response of Mycobacterium smegmatis to acid stress. FEMS Microbiol Lett 9:11–17. doi:10.1111/j.1574-6968.1996.tb08173.x

    Article  Google Scholar 

  5. Rao M, Streur TL, Aldwell FE et al (2001) Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology 147:1017–1024

    PubMed  CAS  Google Scholar 

  6. Camacho LR, Ensergueix D, Perez E et al (1999) Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267. doi:10.1046/j.1365-2958.1999.01593.x

    Article  PubMed  CAS  Google Scholar 

  7. Lamichhane G, Zignol M, Blades NJ et al (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 100:7213–7218. doi:10.1073/pnas.1231432100

    Article  PubMed  CAS  Google Scholar 

  8. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84. doi:10.1046/j.1365-2958.2003.03425.x

    Article  PubMed  CAS  Google Scholar 

  9. Richter L, Saviola B (2008) The lipF promoter of Mycobacterium tuberculosis is upregulated by acidic pH but not by other stress conditions. Microbiol Res (in press).

  10. Clemens DL, Horwitz MA (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181:257–270. doi:10.1084/jem.181.1.257

    Article  PubMed  CAS  Google Scholar 

  11. Deretic V, Fratti RA (1999) Mycobacterium tuberculosis phagosome. Mol Microbiol 31:1603–1609. doi:10.1046/j.1365-2958.1999.01279.x

    Article  PubMed  CAS  Google Scholar 

  12. Schaible UE, Sturgill-Koszycki S, Schlesinger PH et al (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160:1290–1296

    PubMed  CAS  Google Scholar 

  13. Via LE, Deretic D, Ulmer RJ (1997) Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab 5 and rab7. J Biol Chem 272:13326–13331. doi:10.1074/jbc.272.20.13326

    Article  PubMed  CAS  Google Scholar 

  14. Xu S, Cooper A, Sturgill-Koszycki S (1994) Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium infected macrophages. J Immunol 153:2568–2578

    PubMed  CAS  Google Scholar 

  15. Tran SL, Rao M, Simmers C et al (2005) Mutants of Mycobacterium smegmatis unable to grow at acidic pH in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrozone. Microbiology 151:665–672. doi:10.1099/mic.0.27624-0

    Article  PubMed  CAS  Google Scholar 

  16. Zhang M, Wang J, Li Z et al (2005) Expression and characterization of the carboxyl esterase Rv3487c from Mycobacterium tuberculosis. Prot Exp Purific 42:59–66. doi:10.1016/j.pep. 2005.03.022

    Article  CAS  Google Scholar 

  17. Baba T, Kaneda K, Kusunose E et al (1989) Thermally adaptive changes of mycolic acids in Mycobacterium smegmatis. Biochemistry 106:81–86

    CAS  Google Scholar 

  18. Singh A, Gupta R, Vishwakarma RA et al (2005) Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. J Bacteriol 187:4173–4186. doi:10.1128/JB.187.12.4173-4186.2005

    Article  PubMed  CAS  Google Scholar 

  19. Richter L, Tai W, Felton J et al (2007) Determination of the minimal acid-inducible promoter region of the lipF gene from Mycobacterium tuberculosis. Gene 395:22–28. doi:10.1016/j.gene.2006.12.037

    Article  PubMed  CAS  Google Scholar 

  20. Bashyam MD, Kaushal D, Dasgupta SK et al (1996) A study of the mycobacterial transcription apparatus: identification of novel feature in promoter elements. J Bacteriol 178:4847–4853

    PubMed  CAS  Google Scholar 

  21. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:3–8. doi:10.1016/0378-1119(95)00685-0

    Article  Google Scholar 

  22. Valdivia RH, Hromockyi AE, Monack D et al (1996) Applications for green fluorescent protein (GFP) in the host-pathogen interactions. Gene 173:47–52. doi:10.1016/0378-1119(95)00706-7

    Article  PubMed  CAS  Google Scholar 

  23. Ehrt S, Guo X, Hickey CM et al (2006) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33:e21. doi:10.1093/nar/gni013

    Article  Google Scholar 

  24. Scholz O, Thiel A, Hillen W et al (2000) Quantitative analysis of gene expression with an improved green fluorescent protein. Eur J Biochem 267:1565–1570. doi:10.1046/j.1432-1327.2000.01170.x

    Article  PubMed  CAS  Google Scholar 

  25. Albano CR, Randers-Eichhorn L, Chang Q et al (1996) Quantitative measurement of green fluorescent protein expression. Biotechnol Tech 10:953–958. doi:10.1007/BF00180401

    Article  CAS  Google Scholar 

  26. Soboleski MR, Oaks J, Halford WP (2005) Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. FASEB J 19:440–442

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by an American Lung Association Grant, a California Lung Association grant, and a Potts Memorial Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Saviola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzales, M., Saviola, B. Mutational analysis of the -10 region from the Mycobacterium tuberculosis lipF promoter. Mol Biol Rep 36, 1225–1229 (2009). https://doi.org/10.1007/s11033-008-9301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9301-9

Keywords

Navigation