Skip to main content
Log in

Sequence structure and expression pattern of a novel anionic defensin-like gene from silkworm (Bombyx mori)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A defensin-like gene, BmdefA, was rediscovered in the silkworm genome and expressed sequence tags databases. The open reading frame of BmdefA encodes a prepropeptide consisting of a 22-residue signal peptide, a 34-residue propeptide, and a 36-residue mature peptide with a molecular mass of 4.0 kDa. The mature peptide possesses the characteristic six-cysteine motif of insect defensins, and its predicted isoelectric point is 4.12, indicating it is a novel anionic defensin. An intron is present in BmdefA and several cis-regulatory elements are in the regulating region. It is transcribed constitutively at a high level in the hemocyte, silk gland, head, and ovary of the silkworm larvae, and in the fat body of early-stage pupae and moth. BmdefA is also strongly induced by immune challenge. These results suggest that BmdefA plays an important role in both immunity and metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

References

  1. Bulet P, Hetru C, Dimarcq JL et al (1999) Antimicrobial peptides in insects: structure and function. Dev Comp Immunol 23:329–344

    Article  PubMed  CAS  Google Scholar 

  2. Cheng T, Zhao P, Liu C et al (2006) Structures, regulatory regions, and inductive expression patterns of antimicrobial peptide genes in the silkworm Bombyx mori. Genomics 87:356–365

    Article  PubMed  CAS  Google Scholar 

  3. Yamakawa M, Tanaka H (1999) Immune proteins and their gene expression in the silkworm, Bombyx mori. Dev Comp Immunol 23:281–289

    Article  PubMed  CAS  Google Scholar 

  4. Xiao Y, Hughes AL, Ando J et al (2004) A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5:56

    Article  PubMed  Google Scholar 

  5. Lamberty M, Ades S, Uttenweiler-Joseph S et al (1999) Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274:9320–9326

    Article  PubMed  CAS  Google Scholar 

  6. Lee YS, Yun EK, Jang WS et al (2004) Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol Biol 13:65–72

    Article  PubMed  CAS  Google Scholar 

  7. Cytryńska M, Mak P, Zdybicka-Barabas A et al (2007) Purification and characterization of eight peptides from Galleria mellonella immune hemolymph. Peptides 28:533–546

    Article  PubMed  Google Scholar 

  8. Mandrioli M, Bugli S, Saltini S et al (2003) Molecular characterization of a defensin in the IZD-MB-0503 cell line derived from immunocytes of the insect Mamestra brassicae (Lepidoptera). Biol Cell 95:53–57

    Article  PubMed  CAS  Google Scholar 

  9. Landon C, Barbault F, Legrain M et al (2004) Lead optimization of antifungal peptides with 3D NMR structures analysis. Protein Sci 13:703–713

    Article  PubMed  CAS  Google Scholar 

  10. Volkoff AN, Rocher J, d’Alencon E et al (2003) Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects?. Gene 319:43–53

    Article  PubMed  CAS  Google Scholar 

  11. Xia Q, Zhou Z, Lu C et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940

    Article  PubMed  Google Scholar 

  12. Cheng TC, Xia QY, Qian JF et al (2004) Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochem Mol Biol 34:523–530

    Article  PubMed  Google Scholar 

  13. Mita K, Kasahara M, Sasaki S et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35

    Article  PubMed  CAS  Google Scholar 

  14. Taniai K, Tomita S (2000) A novel lipopolysaccharide response element in the Bombyx mori cecropin B promoter. J Biol Chem 275:13179–13182

    Article  PubMed  CAS  Google Scholar 

  15. Kadalayil L, Petersen UM, Engström Y (1997) Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res 25:1233–1239

    Article  PubMed  CAS  Google Scholar 

  16. Lehane MJ, Wu D, Lehane SM (1997) Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci USA 94:11502–11507

    Article  PubMed  CAS  Google Scholar 

  17. Richman AM, Dimopoulos G, Seeley D et al (1997) Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes. EMBO J 16:6114–6119

    Article  PubMed  CAS  Google Scholar 

  18. Yang J, Furukawa S, Sagisaka A et al (1999) cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 122:409–414

    Article  PubMed  CAS  Google Scholar 

  19. Kotani E, Yamakawa M, Iwamoto S et al (1995) Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim Biophys Acta 1260:245–258

    PubMed  Google Scholar 

  20. Dimarcq JL, Hoffmann D, Meister M et al (1994) Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem 221:201–209

    Article  PubMed  CAS  Google Scholar 

  21. Samakovlis C, Kimbrell DA, Kylsten P et al (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J 9:2969–2976

    PubMed  CAS  Google Scholar 

  22. Nanbu R, Nakajima Y, Ando K et al (1988) Novel feature of expression of the sarcotoxin IA gene in development of Sarcophaga peregrina. Biochem Biophys Res Commun 150:540–544

    Article  PubMed  CAS  Google Scholar 

  23. Chung KT, Ourth DD (2000) Viresin. A novel antibacterial protein from immune hemolymph of Heliothis virescens pupae. Eur J Biochem 267:677–683

    Article  PubMed  CAS  Google Scholar 

  24. Boman HG, Hultmark D (1987) Cell-free immunity in insects. Annu Rev Microbiol 41:103–126

    Article  PubMed  CAS  Google Scholar 

  25. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  PubMed  CAS  Google Scholar 

  26. Lai R, Lomas LO, Jonczy J (2004) Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum. Biochem J 379:681–685

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by (1) Grant-in-Aid for Global COE Program by the Ministry of Education, Culture, Sports, Science, and Technology, Japan, (2) Grant-in-Aid for Scientific Research (B) (No. 18380041) by Japan Society for the Promotion of Science, Japan, and (3) The Fund for Foreign Scholars in University Research and Teaching Programs (No. B07045), funded by the Ministry of Education and State Administration of Foreign Experts Affairs, P.R. China. We are indebted to the Division of Gene Research, Research Center for Human and Environmental Sciences, Shinshu University, for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiqian Lan.

Additional information

Hongxiu Wen and Xiqian Lan contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, H., Lan, X., Cheng, T. et al. Sequence structure and expression pattern of a novel anionic defensin-like gene from silkworm (Bombyx mori). Mol Biol Rep 36, 711–716 (2009). https://doi.org/10.1007/s11033-008-9233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9233-4

Keywords

Navigation