Skip to main content

Advertisement

Log in

Establishment of the expression system for studying the function of active caspase-3 in zebrafish

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Caspase-3, a key molecule in apoptosis, has been extensively studied in cell culture system; however, it has been less well characterized in vivo because certain mediators are required for the proteolytic activation of effector caspases, including caspase-3. In this study, various forms of caspase-3 with the C-terminal GFP tag were inserted into the pCS2+ plasmid, and the expression patterns of caspase-3 proteins were characterized in a zebrafish model system using microinjection of nucleic acids into zebrafish embryos. We have verified that active caspase-3 was generated by its autocatalytic activity under the condition of caspase-2 prodomain (C2P)-caspase-3-GFP overexpression, indicating that the C2P domain is crucial for the activation of caspase-3. We also confirmed that the C2P domain plays an important role in regulating the nuclear localization of the C2P-caspase-3 chimeric protein. We used this expression system to establish an animal model system suitable for the investigation of the functional characteristics of caspase-3 in vivo. Thus, our study provides a useful and specific tool for investigating the molecular mechanisms by which active caspase-3 regulates apoptosis during embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  2. Degterev A Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    Article  Google Scholar 

  3. Stennicke HR, Salvesen GS (1998) Properties of the caspases. Biochim Biophys Acta 1387:17–31

    PubMed  CAS  Google Scholar 

  4. MacFarlane M, Williams AC (2004) Apoptosis and disease: a life or death decision. EMBO Rep 5:674–678

    Article  PubMed  CAS  Google Scholar 

  5. Arimura T, Kojima-Yuasa A, Suzuki M, Kennedy DO, Matsui-Yuasa I (2003) Caspase-independent apoptosis induced by evening primrose extract in Ehrlich ascites tumor cells. Cancer Lett 201:9–16

    Article  PubMed  CAS  Google Scholar 

  6. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23:2785–2796

    Article  PubMed  CAS  Google Scholar 

  7. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

  8. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074

    Article  PubMed  CAS  Google Scholar 

  9. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17:2481–2495

    Article  PubMed  CAS  Google Scholar 

  10. Boatright KM, Renatus M, Scott FL Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  PubMed  CAS  Google Scholar 

  11. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    Article  PubMed  CAS  Google Scholar 

  12. Okun I, Malarchuk S, Dubrovskaya E, Khvat A, Tkachenko S, Kysil V, Ilyin A, Kravchenko D, Prossnitz ER, Sklar L, Ivachtchenko A (2006) Screening for caspase-3 inhibitors: a new class of potent small-molecule inhibitors of caspase-3. J Biomol Screen 11:277–285

    Article  PubMed  CAS  Google Scholar 

  13. Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–1570

    Article  PubMed  CAS  Google Scholar 

  14. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  PubMed  CAS  Google Scholar 

  15. Kerr LE, McGregor AL, Amet LE, Asada T, Spratt C, Allsopp TE, Harmar AJ, Shen S, Carlson G, Logan N, Kelly JS, Sharkey J (2004) Mice overexpressing human caspase 3 appear phenotypically normal but exhibit increased apoptosis and larger lesion volumes in response to transient focal cerebral ischaemia. Cell Death Differ 11:1102–1111

    Article  PubMed  CAS  Google Scholar 

  16. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  PubMed  CAS  Google Scholar 

  17. Yabu T, Kishi S, Okazaki T, Yamashita M (2001) Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. Biochem J 360:39–47

    Article  PubMed  CAS  Google Scholar 

  18. Colussi PA, Harvey NL, Shearwin-Whyatt LM, Kumar S (1998) Conversion of procaspase-3 to an autoactivating caspase by fusion to the caspase-2 prodomain. J Biol Chem 273:26566–26570

    Article  PubMed  CAS  Google Scholar 

  19. Liu TX, Zhou Y, Kanki JP, Deng M, Rhodes J, Yang HW, Sheng XM, Zon LI, Look AT (2002) Evolutionary conservation of zebrafish linkage group 14 with frequently deleted regions of human chromosome 5 in myeloid malignancies. Proc Natl Acad Sci USA 99:6136–6141

    Article  PubMed  CAS  Google Scholar 

  20. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  PubMed  CAS  Google Scholar 

  21. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  PubMed  CAS  Google Scholar 

  22. Key B, Devine CA (2003) Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Methods Cell Sci 25:1–6

    Article  PubMed  CAS  Google Scholar 

  23. Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3:63–74

    Article  PubMed  CAS  Google Scholar 

  24. Shin JT, Fishman MC (2002) From Zebrafish to human: modular medical models. Annu Rev Genomics Hum Genet 3:311–340

    Article  PubMed  CAS  Google Scholar 

  25. Cho SW, Park HJ, Kim GY, Nam MK, Kim HY, Ko IH, Kim CH, Rhim H (2006) Establishment of the expression system of human HtrA2 in the zebrafish. J Life Sci 16:571–578

    Google Scholar 

  26. Pyati UJ, Look AT, Hammerschmidt M (2007) Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Semin Cancer Biol 17:154–165

    Article  PubMed  CAS  Google Scholar 

  27. Nusslein-Volhard C, Dahm R (2002) Zebrafish. Oxford University Press, New York, pp 7–37

    Google Scholar 

  28. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    PubMed  CAS  Google Scholar 

  29. Rupp RA, Snider L, Weintraub H (1994) Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev 8:1311–1323

    Article  PubMed  CAS  Google Scholar 

  30. Turner DL, Weintraub H (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8:1434–1447

    Article  PubMed  CAS  Google Scholar 

  31. Jeang KT, Rawlins DR, Rosenfeld PJ, Shero JH, Kelly TJ, Hayward GS (1987) Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of simian and human cytomegalovirus. J Virol 61:1559–1570

    PubMed  CAS  Google Scholar 

  32. Baliga BC, Colussi PA, Read SH, Dias MM, Jans DA, Kumar S (2003) Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J Biol Chem 278:4899–4905

    Article  PubMed  CAS  Google Scholar 

  33. Colussi PA, Harvey NL, Kumar S (1998) Prodomain-dependent nuclear localization of the caspase-2 (Nedd2) precursor. A novel function for a caspase prodomain. J Biol Chem 273:24535–24542

    Article  PubMed  CAS  Google Scholar 

  34. Yamabe K, Shimizu S, Ito T, Yoshioka Y, Nomura M, Narita M, Saito I, Kanegae Y, Matsuda H (1999) Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Ther 6:1952–1959

    Article  PubMed  CAS  Google Scholar 

  35. Pajonk F, van Ophoven A, Weissenberger C, McBride WH (2005) The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism. BMC Cancer 5:76

    Article  PubMed  Google Scholar 

  36. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, Casciola-Rosen LA, Rosen A (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol 140:1485–1495

    Article  PubMed  CAS  Google Scholar 

  37. An S, Park MJ, Park IC, Hong SI, Knox K (2003) Procaspase-3 and its active large subunit localized in both cytoplasm and nucleus are activated following application of apoptotic stimulus in Ramos-Burkitt lymphoma B cells. Int J Mol Med 12:311–317

    PubMed  CAS  Google Scholar 

  38. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T (2005) A-kinase-anchoring protein 95 functions as a potential carrier for the nuclear translocation of active caspase 3 through an enzyme-substrate-like association. Mol Cell Biol 25:9469–9477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Cheol-Hee Kim for the pCS2+ and pCS2+ GFP plasmids. This work was supported by a Grant (20050401-034-658-135-03-00) from BioGreen 21 Program, Rural Development Administration, Republic of Korea and National R&D Program for Cancer Control, Ministry of Health & Welfare, Republic of Korea (0720300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyangshuk Rhim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HY., Kim, GY., Kim, SS. et al. Establishment of the expression system for studying the function of active caspase-3 in zebrafish. Mol Biol Rep 36, 405–413 (2009). https://doi.org/10.1007/s11033-007-9194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9194-z

Keywords

Navigation