Skip to main content
Log in

Molecular cloning, characterization and regulation of a peroxiredoxin gene from Schizosaccharomyces pombe

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A gene encoding a putative peroxiredoxin (Prx) of the fission yeast Schizosaccharomyces pombe was characterized and its regulation was studied. The full length of the prx gene was introduced into the shuttle vector pRS316 after PCR amplification, resulting in the recombinant plasmid pPrx10. The determined DNA sequence carries 1,327 bp encoding a putative Prx with a molecular mass of 19,510 Da. Prx activity was significantly increased in the S. pombe cells harboring pPrx10. The accelerated growth was observed in the S. pombe/pPrx10 cells, implying the involvement of the cloned gene in the yeast growth. To study transcriptional regulation of the prx gene, the prx-lacZ fusion gene was constructed using the yeast-E. coli shuttle vector YEp367R, and named pPrxup10. The synthesis of β-galactosidase from the fusion gene was enhanced under carbon source-limited conditions and nitrogen starvation. Under the same growth conditions, the prx mRNA levels of the wild-type yeast cells were increased. The prx mRNA level was markedly decreased in the Pap1-negative mutant, compared with that in the wild-type yeast, suggesting that the basal expression of the prx gene is mediated by a transcription factor, Pap1. The reactive oxygen species (ROS) level was diminished in the S. pombe/pPrx10 cells than in the control cells. The extra copies of the prx gene were able to resist elevation of ROS level under limited carbon source condition and menadione treatment. In brief, the S. pombe Prx is linked with the yeast growth and up-regulated by metabolic oxidative stress on a transcriptional level. The Prx protein is partly responsible for maintaining low ROS level under normal and stressful growth conditions in the fission yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ONPG:

ο-Nitrophenyl-β-d-galactoside

Prx:

Peroxiredoxin

PCR:

Polymerase chain reaction

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcriptase-polymerase chain reaction

S. pombe :

Schizosaccharomyces pombe

References

  1. Bast A, Wolf G, Oberbäumer I, Walther R (2002) Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetol 45:867–876

    Article  CAS  Google Scholar 

  2. Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K, Chae HZ (2001) Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem 276:29826–29832

    Article  PubMed  CAS  Google Scholar 

  3. Wong CM, Zhou Y, Ng RW, Kung HF, Jin DY (2002) Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J Biol Chem 277:5385–5394

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins. Biol Chem 383:347–364

    Article  PubMed  CAS  Google Scholar 

  5. Chae HZ, Robinson K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91:7017–7021

    Article  PubMed  CAS  Google Scholar 

  6. Wood ZA, Schröder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40

    Article  PubMed  CAS  Google Scholar 

  7. Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 Å resolution. Nat Struct Biol 5:400–406

    Article  PubMed  CAS  Google Scholar 

  8. Okazaki S, Naganuma A, Kuge S (2005) Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid Red Signal 7:327–334

    Article  CAS  Google Scholar 

  9. Bozonet SM, Findlay VJ, Day AM, Cameron J, Veal EA, Morgan BA (2005) Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J Biol Chem 280:23319–23327

    Article  PubMed  CAS  Google Scholar 

  10. Veal EA, Findlay VJ, Day AM, Bozonet SM, Evans JM, Quinn J, Morgan BA (2004) A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 15:129–139

    Article  PubMed  CAS  Google Scholar 

  11. Wong CM, Ching YP, Zhou Y, Kung HF, Jin DY (2003) Transcriptional regulation of yeast peroxiredoxin gene TSA1 through Hap1p, Rox1p, and Hap2/3/5p. Free Radic Biol Med 34:585–597

    Article  PubMed  CAS  Google Scholar 

  12. Wong CM, Siu KL, Jin DY (2004) Peroxiredoxin-null yeast cells are hypersentsitive to oxidative stress and are genomically unstable. J Biol Chem 279:23207–23213

    Article  PubMed  CAS  Google Scholar 

  13. Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW (2003) Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 14:S211-S215

    Article  PubMed  CAS  Google Scholar 

  14. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    Article  PubMed  CAS  Google Scholar 

  15. Myers AM, Tzagoloff A, Kinney DM, Lusty CJ (1986) Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310

    Article  PubMed  CAS  Google Scholar 

  16. Jeong JS, Kwon SJ, Kang SW, Rhee SG, Kim K (1999) Purification and characterization of a second type thioredoxin peroxidase (type II Tpx) from Saccharomyces cerevisiae. Biochem 38:776–783

    Article  CAS  Google Scholar 

  17. Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:81–191

    Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  19. Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  PubMed  CAS  Google Scholar 

  20. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, et al. (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  21. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, et al. (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  22. Yashiroda H, Tanaka K (2003) But1 and But2 proteins bind to Uba3, a catalytic subunit of E1 for neddylation, in fission yeast. Biochem Biophys Res Commun 311:691–695

    Article  PubMed  CAS  Google Scholar 

  23. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  Google Scholar 

  24. Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  PubMed  CAS  Google Scholar 

  25. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation-induced oxidative stress in human tumor cells: a fundamental defect in metabolism?. Ann NY Acad Sci 899:349–362

    Article  PubMed  CAS  Google Scholar 

  26. Lee YJ, Galoforo SS, Berns CM, Chen JC, Davis BH, Sim JE, Corry PM, Spitz DR (1998) Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol Chem 273:5294–5299

    Article  PubMed  CAS  Google Scholar 

  27. Mehdi K, Penninckx MJ (2001) An important role for glutathione and γ-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiol 143:1885–1889

    Google Scholar 

  28. Springael JY, Penninckx MJ (2003) Nitrogen-source regulation of yeast γ-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Biochem J 371:589–595

    Article  PubMed  CAS  Google Scholar 

  29. Toone WM, Kuge S, Samuels M, Morgan BA, Toda T, Jones N (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/ Spc1. Genes Dev 12:23042–23049

    Article  Google Scholar 

  30. Fujii Y, Shimizu T, Toda T, Yanagida M, Hakoshima T (2000) Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nat Struct Biol 7:889–893

    Article  PubMed  CAS  Google Scholar 

  31. Cho NC, Kang HJ, Lim HW, Kim BC, Park EH, Lim CJ (2006) Stress-dependent regulation of Pbh1, a BIR domain-containing protein, in the fission yeast. Can J Microbiol 52:1261–1265

    Article  PubMed  CAS  Google Scholar 

  32. Nordberg J, Arnér ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Rad Biol Med 31:1287–1312

    Article  PubMed  CAS  Google Scholar 

  33. Hampton MB, Fadeel B, Orrenius S (1998) Redox regulation of the caspase during apoptosis. Ann NY Acad Sci 854:328–335

    Article  PubMed  CAS  Google Scholar 

  34. Wu CY, Bird AJ, Winge DR, Eide DJ (2007) Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency. J Biol Chem 282:2184–2195

    Article  PubMed  CAS  Google Scholar 

  35. Low FM, Hampton MB, Peskin AV, Winterbourn CC (2007) Peroxiredoxin 2 functions as a non-catalytic scavenger of low level hydrogen peroxide in the erythrocyte. Blood 109:2611–2617

    Article  PubMed  CAS  Google Scholar 

  36. Kumin A, Huber C, Rulicke T, Wolf E, Werner S (2006) Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am J Pathol 169:1194–1205

    Article  PubMed  CAS  Google Scholar 

  37. Jiang Q, Yan YH, Hu GK, Zhang YZ (2005) Molecular cloning and characterization of a peroxiredoxin from Phanerochaete chrysosporium. Cell Mol Biol Lett 10:659–668

    PubMed  CAS  Google Scholar 

  38. Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE (2006) Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. J Cell Biol 175:225–235

    Article  PubMed  CAS  Google Scholar 

  39. Vivancos AP, Jara M, Zuin A, Sanso M, Hidalgo E (2006) Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol Genet Genomics 276:495–502

    Article  PubMed  CAS  Google Scholar 

  40. Phalen TJ, Weirather K, Deming PB, Anathy V, Howe AK, van der Vliet A, Jonsson TJ, Poole LB, Heintz NH (2006) Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J Cell Biol 175:779–789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the SRC program of MOST/KOSEF (R11-2005-017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun-Hee Park or Chang-Jin Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, GY., Park, EH. & Lim, CJ. Molecular cloning, characterization and regulation of a peroxiredoxin gene from Schizosaccharomyces pombe . Mol Biol Rep 35, 387–395 (2008). https://doi.org/10.1007/s11033-007-9098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9098-y

Keywords

Navigation