Skip to main content
Log in

Interactome of signaling networks in wheat: the protein–protein interaction between TaRAR1 and TaSGT1

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

RAR1 and SGT1 are required for development and disease resistance in plants. In many cases, RAR1 and SGT1 regulate the resistance (R)-gene-mediated defense signaling pathways. Lr21 is the first identified NBS-LRR-type R protein in wheat and is required for resistance to the leaf rust pathogen. The Lr21-mediated signaling pathways require the wheat homologs of RAR1, SGT1, and HSP90. However, the molecular mechanisms of the Lr21-mediated signaling networks remain unknown. Here I present the DNA and protein sequences of TaRAR1 and TaSGT1, and demonstrate for the first time a direct protein-protein interaction between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HSP90:

Heat shock protein 90

RAR1:

Required for Mla12 resistance

SGT1:

Suppressor of the G2 allele of skp1

Y2H:

Yeast two-hybrid analysis

References

  1. Holt BF III, Hubert DA, Dangl JL (2003) Resistance gene signaling in plants – complex similarities to animal innate immunity. Curr Opin Immun 15:20–25

    Article  CAS  Google Scholar 

  2. Faigon-Soverna A, Harmon FG, Storani L, Karayekov E, Staneloni RJ, Gassmann W, Mas P, Casal JJ, Kay SA, Yanovsky MJ (2006) A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development. Plant Cell 18:2919–2928

    Article  PubMed  CAS  Google Scholar 

  3. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  4. Staskawicz BJ, Mudgett MB, Dangl JL, Galan JE (2001) Common and contrasting themes of plant and animal diseases. Science 292:2285–2289

    Article  PubMed  CAS  Google Scholar 

  5. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  6. Muskett P, Parker J (2003) Role of SGT1 in the regulation of plant R gene signalling. Microbes Infec 5:969–976

    Article  CAS  Google Scholar 

  7. Sangster TA, Queitsch C (2005) The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol 8:86–92

    Article  PubMed  CAS  Google Scholar 

  8. Shirasu K, Lahaye T, Tan M-W, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366

    Article  PubMed  CAS  Google Scholar 

  9. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 295:2077–2080

    Article  PubMed  CAS  Google Scholar 

  10. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P (2002) The RAR1 interactor SGT1, an essential component of R gene-mediated disease resistance. Science 295:2073–2076

    Article  PubMed  CAS  Google Scholar 

  11. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/MIN1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  PubMed  CAS  Google Scholar 

  12. Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC, Schauser L, Jaggard DAW, Xiao S, Coleman MJ, Dow M, Jones JDG, Shirasu K, Baulcombe DC (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA. 99:10865–10869

    Article  PubMed  CAS  Google Scholar 

  13. Tor M, Gordon P, Cuzick A, Eulgem T, Sinapidou E, Mert-Turk F, Can C, Dangl JL, Holub EB (2002) Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. Plant Cell 14:993–1003

    Article  PubMed  CAS  Google Scholar 

  14. Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  PubMed  CAS  Google Scholar 

  15. Tornero P, Merritt P, Sadanandom A, Shirasu K, Innes RW, Dangl JL (2002) RAR1 and NDR1 contribute quantitatively to disease resistance in Arabidopsis, and their relative contributions are dependent on the R gene assayed. Plant Cell 14:1005–1015

    Article  PubMed  CAS  Google Scholar 

  16. Bieri S, Mauch S, Shen Q-H, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiss HH, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480–3495

    Article  PubMed  CAS  Google Scholar 

  17. Holt BF III, Belkhadir Y, Dangl JL (2005) Antagonistic control of disease resistance protein stability in the plant immune system. Science 309:929–932

    Article  PubMed  CAS  Google Scholar 

  18. Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016

    Article  PubMed  CAS  Google Scholar 

  19. Shang Y, Li X, Cui H, He P, Thilmony R, Chintamanani S, Zwiesler-Vollick J, Gopalan S, Tang X, Zhou J-M (2006) RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. Proc Natl Acad Sci USA 103:19200–19205

    Article  PubMed  CAS  Google Scholar 

  20. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, Shirasu K, Dangl JL (2003) Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J 22:5679–5689

    Article  PubMed  CAS  Google Scholar 

  21. Lu R, Malcuit I, Moffett P, Ruiz T, Peart J, Wu A-J, Rathjen JP, Bendahmane A, Day D, Baulcombe DC (2003) High throughput virus-induced gene silencing identifies heat shock protein 90 as a cofactor of plant disease resistance. EMBO J 22:5690–5699

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi A, Casais C, Ichimura K, Shirasu K (2003) HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci USA 100:11777–11782

    Article  PubMed  CAS  Google Scholar 

  23. Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. Plant Cell 14:1483–1496

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Burch-Smith T, Schiff M, Feng S, Dinesh-Kumar SP (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem 279:2101–2108

    Article  PubMed  CAS  Google Scholar 

  25. Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 8:252–258

    Article  PubMed  CAS  Google Scholar 

  26. Garcia-Ranea JA, Mirey G, Camonis J, Valencia A (2002) p23 and HSP20/α-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett. 529:162–167

    Article  PubMed  CAS  Google Scholar 

  27. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  PubMed  CAS  Google Scholar 

  28. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  29. Coaker G, Falick A, Staskawicz B (2005) Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science 308:548–550

    Article  PubMed  CAS  Google Scholar 

  30. Day B, Dahlbeck D, Staskawicz BJ (2006) NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. Plant Cell 18:2782–2791

    Article  PubMed  CAS  Google Scholar 

  31. Mackey D, Holt BF III, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754

    Article  PubMed  CAS  Google Scholar 

  32. Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank J. Hauff for technical support and Dr. L. Huang and Dr. B.S. Gill of Kansas State University for the wheat seeds. I feel a deep sense of gratitude to Dr. Brady Vick, Dr. Lynn Dahleen, and Dr. Michael Edwards of USDA-ARS and the three anonymous reviewers for critical and helpful comments on this manuscript. This work was funded by USDA-ARS CRIS project no. 5442-21000-030-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Shan Tai.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, YS. Interactome of signaling networks in wheat: the protein–protein interaction between TaRAR1 and TaSGT1. Mol Biol Rep 35, 337–343 (2008). https://doi.org/10.1007/s11033-007-9091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9091-5

Keywords

Navigation