Skip to main content
Log in

Several transcription factors regulate COX-2 gene expression in pancreatic β-cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cyclooxygenase-2 (COX-2) expression is associated with many aspects of physiological and pathological conditions, including pancreatic β-cell dysfunction. Prostaglandin E2 (PGE2) production, as a consequence of COX-2 gene induction, has been reported to impair β-cell function. The molecular mechanisms involved in the regulation of COX-2 gene expression are not fully understood. In this report, we used pancreatic β-cells (RINm5F) to explore the potential transcription factors regulating COX-2 promoter activity. Using promoter screening method, we selected several transcription factors in our study. Through luciferase reporter studies, we found that these factors can regulate COX-2 promoter activity in RINm5F cells. Among these factors, cyclic AMP response-element binding protein (CREB), Ets family members Ets-1 and Elk-1 can positively regulate COX-2 promoter activity. On the contrary, signal transducer and activator of transcription 1 (STAT1) plays a negative role on COX-2 promoter. Our findings will be helpful for better understanding the transcriptional regulation of COX-2 in pancreatic β-cells. Moreover, these transcriptional regulators of COX-2 expression will be potential targets for the prevention of β-cell damage mediated by PGE2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

COX-2:

Cyclooxygenase-2

PGE2:

Prostaglandin E2

CREB:

Cyclic AMP response-element binding protein

STAT1:

Signal transducer and activator of transcription 1

MAPK:

Mitogen-activated protein kinase

ERKs:

Extracellular signal-regulated kinases

JNK:

c-Jun N-terminal kinase

JAK:

Janus kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

CaMK:

Calmodulin kinase

References

  1. Chandrasekharan NV, Dai H, Roos KL et al (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc Natl Acad Sci USA 99:13926–13931

    Article  PubMed  CAS  Google Scholar 

  2. Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271:33157–33160

    Article  PubMed  CAS  Google Scholar 

  3. Guan Z, Buckman SY, Baier LD et al (1998) IGF-I and insulin amplify IL-1 beta-induced nitric oxide and prostaglandin biosynthesis. Am J Physiol 274:673–679

    Google Scholar 

  4. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  PubMed  CAS  Google Scholar 

  5. Tsuji S, Tsujii M, Kawano S et al (2001) Cyclooxygenase-2 upregulation as a perigenetic change in carcinogenesis. J Exp Clin Cancer Res 20:117–129

    PubMed  CAS  Google Scholar 

  6. Ristimaki A, Garfinkel S, Wessendorf J et al (1994) Induction of cyclooxygenase-2 by interleukin-1 alpha. Evidence for post-transcriptional regulation. J Biol Chem 269:11769–11775

    PubMed  CAS  Google Scholar 

  7. Huang ZF, Massey JB, Via DP (2000) Differential regulation of cyclooxygenase-2 (COX-2) mRNA stability by interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) in human in vitro differentiated macrophages. Biochem Pharmacol 59:187–194

    Article  PubMed  CAS  Google Scholar 

  8. Dixon DA, Kaplan CD, McIntyre TM et al (2000) Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′-untranslated region. J Biol Chem 275:11750–11757

    Article  PubMed  CAS  Google Scholar 

  9. Tamura M, Sebastian S, Yang S et al (2002) Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells. J Clin Endocrinol Metab 87:3263–3273

    Article  PubMed  CAS  Google Scholar 

  10. Tazawa R, Xu XM, Wu KK et al (1994) Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem Biophys Res Commun 203:190 –199

    Article  PubMed  CAS  Google Scholar 

  11. Kirtikara K, Raghow R, Laulederkind SJ et al (2000) Transcriptional regulation of cyclooxygenase-2 in the human microvascular endothelial cell line, HMEC-1: control by the combinatorial actions of AP2, NF-IL-6 and CRE elements. Mol Cell Biochem 203:41–51

    Article  PubMed  CAS  Google Scholar 

  12. Crofford LJ, Tan B, McCarthy CJ et al (1997) Involvement of nuclear factor kappa B in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis Rheum 40:226–236

    Article  PubMed  CAS  Google Scholar 

  13. Mestre JR, Rivadeneira DE, Mackrell PJ et al (2001) Overlapping CRE and E-box promoter elements can independently regulate COX-2 gene transcription in macrophages. FEBS Lett 496:147–151

    Article  PubMed  CAS  Google Scholar 

  14. Koon HW, Zhao D, Zhan Y et al (2006) Substance P stimulates cyclooxygenase-2 and prostaglandin E2 expression through JAK–STAT activation in human colonic epithelial cells. J Immunol 176:5050–5059

    PubMed  CAS  Google Scholar 

  15. Schroer K, Zhu Y, Saunders MA et al (2002) Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation 105:2760 –2765

    Article  PubMed  CAS  Google Scholar 

  16. Saunders MA, Sansores-Garcia L, Gilroy DW et al (2001) Selective suppression of CCAAT/enhancer-binding protein beta binding and cyclooxygenase-2 promoter activity by sodium salicylate in quiescent human fibroblasts. J Biol Chem 276:18897–18904

    Article  PubMed  CAS  Google Scholar 

  17. Zhu Y, Saunders MA, Yeh H et al (2002) Dynamic regulation of cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer-binding proteins. J Biol Chem 277:6923–6928

    Article  PubMed  CAS  Google Scholar 

  18. Simon LS (1999) Role and regulation of cyclooxygenase-2 during inflammation. Am J Med 106:37S–42S

    Article  PubMed  CAS  Google Scholar 

  19. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94:3336 –3340

    Article  PubMed  CAS  Google Scholar 

  20. Trifan OC, Hla T (2003) Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. J Cell Mol Med 7:207–222

    Article  PubMed  CAS  Google Scholar 

  21. Sheu ML, Ho FM, Yang RS et al (2005) High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase–regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol 25:539–545

    Article  PubMed  CAS  Google Scholar 

  22. Kuwano T, Nakao S, Yamamoto H et al (2004) Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J 18:300–310

    Article  PubMed  CAS  Google Scholar 

  23. Robertson RP (1998) Dominance of cyclooxygenase-2 in the regulation of pancreatic islet prostaglandin synthesis. Diabetes 47:1379–1383

    Article  PubMed  CAS  Google Scholar 

  24. Tran PO, Gleason CE, Poitout V et al (1999) Prostaglandin E(2) mediates inhibition of insulin secretion by interleukin-1beta. J Biol Chem 274:31245–31248

    Article  PubMed  CAS  Google Scholar 

  25. Tran PO, Gleason CE, Robertson RP (2002) Inhibition of interleukin-1β–induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet β-cell function. Diabetes 51:1772–1778

    Article  PubMed  CAS  Google Scholar 

  26. Shanmuqam N, Gaw Gonzalo IT, Natarajan R (2004) Molecular mechanisms of high glucose–induced cyclooxygenase-2 expression in monocytes. Diabetes 53:795–802

    Article  Google Scholar 

  27. Wardlaw SA, Zhang N, Belinsky SA (2002) Transcriptional regulation of basal cyclooxygenase-2 expression in murine lung tumor-derived cell lines by CCAAT/enhancer-binding protein and activating transcription factor/cAMP response element-binding protein. Mol Pharmacol 62:326–333

    Article  PubMed  CAS  Google Scholar 

  28. Norata GD, Callegari E, Inoue H et al (2004) HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: effects on COX-2/PGI-synthase coupling. Arterioscler Thromb Vasc Biol 24:871–877

    Article  PubMed  CAS  Google Scholar 

  29. Pathak SK, Bhattacharyya A, Pathak S et al (2004) Toll-like receptor 2 and mitogen- and stress-activated kinase 1 are effectors of mycobacterium avium-induced cyclooxygenase-2 expression in macrophages. J Biol Chem 279:55127–55136

    Article  PubMed  CAS  Google Scholar 

  30. Yang F, Bleich D (2004) Transcriptional Regulation of Cyclooxygenase-2 Gene in Pancreatic β-Cells. J Biol Chem 279:35403–35411

    Article  PubMed  CAS  Google Scholar 

  31. Tsatsanis C, Androulidaki A, Venihaki M et al (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661

    Article  PubMed  CAS  Google Scholar 

  32. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  33. Ito H, Duxbury M, Benoit E et al (2004) Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1–dependent induction of matrix metalloproteinase-2. Cancer Res 64:7439–7446

    Article  PubMed  CAS  Google Scholar 

  34. Goetze S, Kintscher U, Kaneshiro K et al (2001) TNFα induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signalregulated kinases 1/2. Atherosclerosis 159:93–101

    Article  PubMed  CAS  Google Scholar 

  35. Yeo SJ, Gravis D, Yoon JG et al (2003) Myeloid Differentiation Factor 88-dependent Transcriptional Regulation of Cyclooxygenase-2 Expression by CpG DNA. J Biol Chem 278:22563–22573

    Article  PubMed  CAS  Google Scholar 

  36. Dell’Albani P, Santangelo R, Torrisi L et al (2001) JAK/STAT Signaling pathway mediates Cytokine induced iNOS expression in primary astroglial cell cultures. J Neurosci Res 65:417–424

    Article  PubMed  CAS  Google Scholar 

  37. Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19:5662

    Article  PubMed  CAS  Google Scholar 

  38. O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109:S121–S131

    Article  PubMed  CAS  Google Scholar 

  39. Bernard C, Merval R, Lebret M et al (1999) Oncostatin M induces interleukin-6 and cyclooxygenase-2 expression in human vascular smooth muscle cells: synergy with interleukin-1ß. Circ Res 85:1124–1131

    PubMed  CAS  Google Scholar 

  40. Kim HY, Park EJ, Joe EH et al (2003) Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia1. J Immunol 171:6072–6079

    PubMed  CAS  Google Scholar 

  41. Hanna N, Bonifacio L, Reddy P et al (2004) IFN-gamma-mediated inhibition of COX-2 expression in the placenta from term and preterm labor pregnancies. Am J Reprod Immunol 51:311–318

    Article  PubMed  Google Scholar 

  42. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  PubMed  CAS  Google Scholar 

  43. Kovarik P, Mangold M, Ramsauer K et al (2001) Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J 20:91–100

    Article  PubMed  CAS  Google Scholar 

  44. Tabatabaie T, Waldon AM, Jacob JM et al (2000) COX-2 inhibition prevents insulin-dependent diabetes in low-dose streptozotocin-treated mice. Biochem Biophys Res Commun 273:699–704

    Article  PubMed  CAS  Google Scholar 

  45. Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860

    Article  PubMed  CAS  Google Scholar 

  46. Persaud SJ, Burns CJ, Belin VD et al (2004) Glucose-induced regulation of COX-2 expression in human islets of Langerhans. Diabetes 53:S190–S192

    Article  PubMed  CAS  Google Scholar 

  47. Tanabe T, Tohnai N (2002) Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 68:95–114

    Article  PubMed  Google Scholar 

  48. Cardenas C, Muller M, Jaimovich E et al (2004) Carrasco Depolarization of skeletal muscle cells induces phosphorylation of cAMP response element binding protein via calcium and protein kinase Calpha. J Biol Chem 279:39122–39131

    Article  PubMed  CAS  Google Scholar 

  49. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 98:2808–2813

    Article  PubMed  CAS  Google Scholar 

  50. Togo T (2004) Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependent on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. J Biol Chem 279:44996–45003

    Article  PubMed  CAS  Google Scholar 

  51. Lee CW, Nam JS, Park YK et al (2003) Lysophosphatidic acid stimulates CREB through mitogen- and stress-activated protein kinase-1. Biochem Biophys Res Commun 305:455–461

    Article  PubMed  CAS  Google Scholar 

  52. Sharrocks AD, Brown AL, Ling Y et al (1997) The ETS-domain transcription factor family. Int J Biochem Cell Biol 29:1371–1387

    Article  PubMed  CAS  Google Scholar 

  53. Yordy JS, Muise-Helmericks RC (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19:6503–6513

    Article  PubMed  CAS  Google Scholar 

  54. Barry OP, Kazanietz MG, Pratico D et al (1999) Arachidonic Acid in platelet microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol Chem 274:7545–7556

    Article  PubMed  CAS  Google Scholar 

  55. Kim JY, Ahn MH, Song HO et al (2006) Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii. Korean J Parasitol 44:197–207

    Article  PubMed  Google Scholar 

  56. Guo YS, Cheng JZ, Jin GF et al (2002) Gastrin stimulates cyclooxygenase-2 expression in intestinal epithelial cells through multiple signaling pathways. J Biol Chem 277:48755–48763

    Article  PubMed  CAS  Google Scholar 

  57. Abiru S, Nakao K, Ichikawa T et al (2002) Aspirin and NS-398 inhibit hepatocyte growth factor-induced invasiveness of human hepatoma cells. Hepatology 35:1117–1124

    Article  PubMed  CAS  Google Scholar 

  58. Guo YS, Hellmich MR, Wen XD et al (2001) Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem 276:22941–22947

    Article  PubMed  CAS  Google Scholar 

  59. Barrios-Rodiles M, Chadee K (1998) Novel regulation of cyclooxygenase-2 expression and prostaglandin E2 production by IFN-gamma in human macrophages. J Immunol 161:2441–2448

    PubMed  CAS  Google Scholar 

  60. Chen B, He L, Savell VH et al (2000) Inhibition of the interferon-gamma/signal transducers and activators of transcription (STAT) pathway by hypermethylation at a STAT-binding site in the p21WAF1 promoter region. Cancer Res 60:3290–3298

    PubMed  CAS  Google Scholar 

  61. Coccia EM, Del Russo N, Stellacci E et al (1999) STAT1 activation during monocyte to macrophage maturation: role of adhesion molecules. Int Immunol 11:1075–1083

    Article  PubMed  CAS  Google Scholar 

  62. Ohmori Y, Schreiber RD, Hamilton TA (1997) Synergy between interferon-gamma and tumor necrosis factoralpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J Biol Chem 272:14899–14907

    Article  PubMed  CAS  Google Scholar 

  63. Ezernieks J, Schnarr B, Metz K et al (1996) The human IgE germline promoter is regulated by interleukin-4, via an interferon-gamma-activated site and its flanking regions. Eur J Biochem 240:667–673

    Article  PubMed  CAS  Google Scholar 

  64. Ala-aho R, Johansson N, Grenman R et al (2000) Inhibition of collagenase-3 (MMP-13) expression in transformed human keratinocytes by interferon-gamma is associated with activation of extracellular signal-regulated kinase-1,2 and STAT1. Oncogene 19:248–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (30370676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Han.

Additional information

Xiongfei Zhang and Jingjing Zhang are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhang, J., Yang, X. et al. Several transcription factors regulate COX-2 gene expression in pancreatic β-cells. Mol Biol Rep 34, 199–206 (2007). https://doi.org/10.1007/s11033-007-9085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9085-3

Keywords