Skip to main content

Advertisement

Log in

Identification of the RA response element and transcriptional silencer in human αCaMKII promoter

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The promoter of α subunit of the rat calcium/calmodulin-dependent protein kinase II (αCaMKII) gene was identified to contain an essential TATA element. Cell-based functional assay showed that the rat promoter displayed greater activity in neuronal cells than in non-neuronal cells. To characterize the human αCaMKII promoter, we have developed a promoter-reporter gene assay using different cell lines. A 2047 base pairs (bp) human αCaMKII gene promoter was cloned from human genomic DNA. Unlike the rat αCaMKII promoter, DNA sequence analysis showed that the human promoter was devoid of TATA element. We made series deletions of the promoter and fused the different sizes of the human promoter sequences to a luciferase reporter gene. The promoter-reporter constructs were transfected into human neuroblastoma SH-SY5Y, human neuroblastoma BE(2)-M17, and rat pheochromocytoma PC12 neuronal cell lines as well as human embryonic kidney HEK293 and human glioma U251 non-neuronal cell lines. The reporter gene assay demonstrated that the human αCaMKII promoter displayed high activity in the neuronal cell lines, while the activity was low in non-neuronal cell lines. All-trans retinoic acid (RA) enhanced the promoter activity in SH-SY5Y cells. Further analysis showed that there were two RA response elements located between +11 and +136 and −1911 to −593. In addition, we have identified a potent silencer at position −179 to −244 of the human αCaMKII promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10:1788–1798

    PubMed  CAS  Google Scholar 

  2. Brocke L, Srinivasan M, Schulman H (1995) Developmental and regional expression of multifunctional Ca2+/calmodulin-dependent protein kinase isoforms in rat brain. J Neurosci 15:6797–6808

    PubMed  CAS  Google Scholar 

  3. McGuinness TL, Lai Y, Greengard P (1985) Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum. J Biol Chem 260:1696–1704

    PubMed  CAS  Google Scholar 

  4. Kelly PT, Shields S, Conway K, Yip R, Burgin K (1987) Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: alterations in holoenzyme composition. J Neurochem 49:1927–1940

    Article  PubMed  CAS  Google Scholar 

  5. Li G, Laabich A, Liu LO, Xue J, Cooper NG (2001) Molecular cloning and sequence analyses of calcium/calmodulin-dependent protein kinase II from fetal and adult human brain. Sequence analyses of human brain calcium/calmodulin-dependent protein kinase II. Mol Biol Rep 28:35–41

    Article  PubMed  CAS  Google Scholar 

  6. Erondu NE, Kennedy MB (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 5:3270–3277

    PubMed  CAS  Google Scholar 

  7. Kelly PT, Vernon P (1985) Changes in the subcellular distribution of calmodulin-kinase II during brain development. Brain Res 350:211–224

    PubMed  CAS  Google Scholar 

  8. Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA, Waxham MN (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340:554–557

    Article  PubMed  CAS  Google Scholar 

  9. Wang JH, Kelly PT (1995) Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity. Neuron 15:443–452

    Article  PubMed  Google Scholar 

  10. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    Article  PubMed  CAS  Google Scholar 

  11. Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257:206–211

    Article  PubMed  CAS  Google Scholar 

  12. Thomas KL, Laroche S, Errington ML, Bliss TV, Hunt SP (1994) Spatial and temporal changes in signal transduction pathways during LTP. Neuron 13:737–745

    Article  PubMed  CAS  Google Scholar 

  13. Hanley RM, Payne ME, Cruzalegui F, Christenson MA, Means AR (1989) Sequence of the cDNA for the alpha subunit of calmodulin kinase II from mouse brain. Nucleic Acids Res 17:3992

    Article  PubMed  CAS  Google Scholar 

  14. Lin CR, Kapiloff MS, Durgerian S, Tatemoto K, Russo AF, Hanson P, Schulman H, Rosenfeld MG (1987) Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 84:5962–5966

    Article  PubMed  CAS  Google Scholar 

  15. Olson NJ, Masse T, Suzuki T, Chen J, Alam D, Kelly PT (1995) Functional identification of the promoter for the gene encoding the alpha subunit of calcium/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 92:1659–1663

    Article  PubMed  CAS  Google Scholar 

  16. Mima K, Deguchi S, Yamauchi T (2001) Characterization of 5′ flanking region of alpha isoform of rat Ca2+/calmodulin-dependent protein kinase II gene and neuronal cell type specific promoter activity. Neurosci Lett 307:117–121

    Article  PubMed  CAS  Google Scholar 

  17. Chen J, Kelly PT (1996) Retinoic acid stimulates alpha-CAMKII gene expression in PC12 cells at a distinct transcription initiation site. J Neurosci 16:5704–5714

    PubMed  CAS  Google Scholar 

  18. Yang HM, Do HJ, Oh JH, Kim JH, Choi SY, Cha KY, Chung HM, Kim JH (2005) Characterization of putative cis-regulatory elements that control the transcriptional activity of the human Oct4 promoter. J Cell Biochem 96:821–830

    Article  PubMed  CAS  Google Scholar 

  19. Mori N, Schoenherr C, Vandenbergh DJ, Anderson DJ (1992) A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9:45–54

    Article  PubMed  CAS  Google Scholar 

  20. Kraner SD, Chong JA, Tsay HJ, Mandel G (1992) Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9:37–44

    Article  PubMed  CAS  Google Scholar 

  21. Pahlman S, Ruusala AI, Abrahamsson L, Mattsson ME, Esscher T (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14:135–144

    Article  PubMed  CAS  Google Scholar 

  22. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Cena V, Gallego C, Comella JX (2000) Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem 75:991–1003

    Article  PubMed  CAS  Google Scholar 

  23. Tighilet B, Hashikawa T, Jones EG (1998) Cell- and lamina-specific expression and activity-dependent regulation of type II calcium/calmodulin-dependent protein kinase isoforms in monkey visual cortex. J Neurosci 18:2129–2146

    PubMed  CAS  Google Scholar 

  24. McGinnis KM, Whitton MM, Gnegy ME, Wang KK (1998) Calcium/calmodulin-dependent protein kinase IV is cleaved by caspase-3 and calpain in SH-SY5Y human neuroblastoma cells undergoing apoptosis. J Biol Chem 273:19993–20000

    Article  PubMed  CAS  Google Scholar 

  25. Tombes RM, Krystal GW (1997) Identification of novel human tumor cell-specific CaMK-II variants. Biochim Biophys Acta 1355:281–292

    Article  PubMed  CAS  Google Scholar 

  26. Simpson PB, Bacha JI, Palfreyman EL, Woollacott AJ, McKernan RM, Kerby J (2001) Retinoic acid evoked-differentiation of neuroblastoma cells predominates over growth factor stimulation: an automated image capture and quantitation approach to neuritogenesis. Anal Biochem 298:163–169

    Article  PubMed  CAS  Google Scholar 

  27. Miloso M, Villa D, Crimi M, Galbiati S, Donzelli E, Nicolini G, Tredici G (2004) Retinoic acid-induced neuritogenesis of human neuroblastoma SH-SY5Y cells is ERK independent and PKC dependent. J Neurosci Res 75:241–252

    Article  PubMed  CAS  Google Scholar 

  28. Merrill RA, Ahrens JM, Kaiser ME, Federhart KS, Poon VY, Clagett-Dame M (2004) All-trans retinoic acid-responsive genes identified in the human SH-SY5Y neuroblastoma cell line and their regulated expression in the nervous system of early embryos. Biol Chem 385:605–614

    Article  PubMed  CAS  Google Scholar 

  29. Yu YM, Han PL, Lee JK (2003) JNK pathway is required for retinoic acid-induced neurite outgrowth of human neuroblastoma, SH-SY5Y. Neuroreport 14:941–945

    Article  PubMed  CAS  Google Scholar 

  30. Joshi S, Guleria R, Pan J, DiPette D, Singh US (2006) Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells. Oncogene 25:240–247

    PubMed  CAS  Google Scholar 

  31. Lee LT, Tan-Un KC, Lin MC, Chow BK (2005) Retinoic acid activates human secretin gene expression by Sp proteins and nuclear factor I in neuronal SH-SY5Y cells. J Neurochem 93:339–350

    Article  PubMed  CAS  Google Scholar 

  32. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  PubMed  CAS  Google Scholar 

  33. Pendaries V, Verrecchia F, Michel S, Mauviel A (2003) Retinoic acid receptors interfere with the TGF-beta/Smad signaling pathway in a ligand-specific manner. Oncogene 22:8212–8220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from Ministry of Science and Technology of China (2003AA221061, 2003CB716601), Shanghai Commission for Science and Technology, and Shanghai Commission for Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghe Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Bai, J. & Hu, Y. Identification of the RA response element and transcriptional silencer in human αCaMKII promoter. Mol Biol Rep 35, 37–44 (2008). https://doi.org/10.1007/s11033-006-9049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-006-9049-z

Keywords

Navigation