Skip to main content
Log in

Semi-anaerobic Growth Conditions are Favoured by some Escherichia coli Strains During Heterologous Expression of Some Archaeal Proteins

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Host cell physiology is known to play a crucial role in the expression of foreign genes in heterologous systems. Expression of archaeal genes in anaerobic or semi-anaerobic growth conditions of E. coli has been previously reported to be a means of improving solubility of some proteins. Here, we report that some of the Rosetta strains of E. coli, which harbour the rare tRNA genes for the expression of archaeal genes, favour semi-anaerobic conditions for the expression of putative FMN binding domain of glutamate synthase from Methanocaldococcus jannaschii at low inducer concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MA Vanoni B Curti (2005) Arch. Biochem. Biophys. 433 193–211 Occurrence Handle10.1016/j.abb.2004.08.033 Occurrence Handle1:CAS:528:DC%2BD2cXhtVCgtL7I Occurrence Handle15581577

    Article  CAS  PubMed  Google Scholar 

  2. A Suzuki DB Knaff (2005) Photosynth. Res. 83 191–217 Occurrence Handle10.1007/s11120-004-3478-0 Occurrence Handle1:CAS:528:DC%2BD2MXhslGntrc%3D Occurrence Handle16143852

    Article  CAS  PubMed  Google Scholar 

  3. Hirel B & Lea PJ (2003) In: Foyer CH & Noctor G (Eds.) Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism (pp. 69–92) Kluwer Academic Publishers, Dordrecht.

  4. MA Vanoni DE Edmondson G Zanetti GB Curti (1992) Biochemistry 31 4613–4623 Occurrence Handle10.1021/bi00134a011 Occurrence Handle1:CAS:528:DyaK38XitlSlu7k%3D Occurrence Handle1316154

    Article  CAS  PubMed  Google Scholar 

  5. F Navarro S Chávez S Candau FJ Florencio (1995) Plant. Mol. Biol. 27 753–767 Occurrence Handle10.1007/BF00020228 Occurrence Handle1:CAS:528:DyaK2MXlt1Wnu7s%3D Occurrence Handle7727752

    Article  CAS  PubMed  Google Scholar 

  6. C Binda RT Bossi S Wakatsuki S Arzt A Coda B Curti MA Vanoni A Mattevi (2000) Structure 8 1299–1308 Occurrence Handle10.1016/S0969-2126(00)00540-2 Occurrence Handle1:CAS:528:DC%2BD3MXhtFent7w%3D Occurrence Handle11188694

    Article  CAS  PubMed  Google Scholar 

  7. RH Heuvel D Ferrari RT Bossi S Ravasio B Curti MA Vanoni FJ Florencio A Mattevi (2002) J. Biol. Chem. 277 24579–24583 Occurrence Handle11967268

    PubMed  Google Scholar 

  8. S Ravasio L Dossena EM Figuerosa FJ Florencio A Mattevi P Morandi B Curti MA Vanoni (2002) Biochemistry 41 8120–8133 Occurrence Handle10.1021/bi020083r Occurrence Handle1:CAS:528:DC%2BD38XjvFahu78%3D Occurrence Handle12069605

    Article  CAS  PubMed  Google Scholar 

  9. CJ Bult O White GJ Olsen L Zhou RG Fleischmann GG Sutton JA Blake GA FitzGerald RA Clayton JD Gocayne AR Kerlavage BA Dougherty JB Tomb MD Adams CI Reich R Overbeek EF Kirkness KG Weinstock JM Merrick A Glodek JL Scott NSM Geoghagen JF Weidman JL Fuhrmann D Nguyen TR Utterback JM Kelley JD Peterson PW Sadow MC Hanna MD Cotton KM Roberts MA Hurst BP Kaine M Borodovsky HP Klenk CM Fraser HO Smith CR Woese JC Venter (1996) Science 273 1058–1073 Occurrence Handle1:CAS:528:DyaK28XltFKrsrs%3D Occurrence Handle8688087

    CAS  PubMed  Google Scholar 

  10. HB Dincturk DB Knaff (2000) Mol. Biol. Rep. 27 141–148 Occurrence Handle10.1023/A:1007107909619 Occurrence Handle1:CAS:528:DC%2BD3MXhslGrt70%3D Occurrence Handle11254103

    Article  CAS  PubMed  Google Scholar 

  11. GJ Schut SD Brehm S Datta MWW Adams (2003) J. Bacteriol. 185 3935–3947 Occurrence Handle10.1128/JB.185.13.3935-3947.2003 Occurrence Handle1:CAS:528:DC%2BD3sXltFems7Y%3D Occurrence Handle12813088

    Article  CAS  PubMed  Google Scholar 

  12. B Jongsareejit RNZA Rahman S Fujiwara T Imanaka (1997) Mol. Gen. Genet. 254 635–642 Occurrence Handle1:CAS:528:DyaK2sXksFSkt7g%3D Occurrence Handle9202379

    CAS  PubMed  Google Scholar 

  13. F Sambrook EF Fritsch T Maniatis (1989) Molecular Cloning Cold Spring Harbour Laboratory Press New York

    Google Scholar 

  14. UK Laemmli (1970) Nature 22 680–685

    Google Scholar 

  15. MM Bradford (1976) Anal. Biochem. 72 248–254 Occurrence Handle10.1016/0003-2697(76)90527-3 Occurrence Handle1:CAS:528:DyaE28XksVehtrY%3D Occurrence Handle942051

    Article  CAS  PubMed  Google Scholar 

  16. Y Kashima K Ishikawa (2003) J. Biochem. 134 25–29 Occurrence Handle10.1093/jb/mvg109 Occurrence Handle1:CAS:528:DC%2BD3sXnslGlurw%3D Occurrence Handle12944367

    Article  CAS  PubMed  Google Scholar 

  17. R Kim SJ Sandler S Goldman A Yokota AJ Clark S-H Kim (1998) Biotech. Lett. 20 207–210 Occurrence Handle1:CAS:528:DyaK1cXit1entro%3D

    CAS  Google Scholar 

  18. HW Jannasch MJ Mottl (1986) Science 229 717–725

    Google Scholar 

  19. JB Broderick TF Henshaw J Cheek K Wojtuszewski SR Smith MR Trojan RM McGhan A Kopf M Kibbey WE Broderick (2000) Biochem. Biophys. Res. Commun. 269 451–456 Occurrence Handle10.1006/bbrc.2000.2313 Occurrence Handle1:CAS:528:DC%2BD3cXhsFKhsro%3D Occurrence Handle10708574

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Benan Dincturk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demir, V., Dincturk, H.B. Semi-anaerobic Growth Conditions are Favoured by some Escherichia coli Strains During Heterologous Expression of Some Archaeal Proteins. Mol Biol Rep 33, 59–63 (2006). https://doi.org/10.1007/s11033-005-5067-5

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-005-5067-5

Keywords

Navigation