Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178
CAS
PubMed
Google Scholar
Allier A, Teyssedre S, Lehermeier C, Charcosset A, Moreau L (2020) Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs. Theor Appl Genet 133:201–215
PubMed
Google Scholar
Andorf C, Beavis WD, Hufford M, Smith S, Suza WP, Wang K, Woodhouse M, Yu JM, Lubberstedt T (2019) Technological advances in maize breeding: past, present and future. Theor Appl Genet 132:817–849
CAS
PubMed
Google Scholar
Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326
CAS
PubMed
Google Scholar
Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442
CAS
PubMed
Google Scholar
Bleckmann A, Weidtkamp-Peters S, Seidel CAM, Simon R (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152:166–176
CAS
PubMed
PubMed Central
Google Scholar
Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245
CAS
PubMed
Google Scholar
Bommert P, Nagasawa NS, Jackson D (2013b) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45:334–337
CAS
PubMed
Google Scholar
Bommert P, Je BI, Goldshmidt A, Jackson D (2013a) The maize Galpha gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:555–558
CAS
PubMed
Google Scholar
Bortiri E, Jackson D, Hake S (2006) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–171
CAS
PubMed
Google Scholar
Cairns JE, Prasanna BM (2018) Developing and deploying climate-resilient maize varieties in the developing world. Curr Opin Plant Biol 45:226–230
PubMed
PubMed Central
Google Scholar
Chandran S, Pukalenthy B, Adhimoolam K, Manickam D, Sampathrajan V, Chocklingam V, Eswaran K, Arunachalam K, Meetei LJ, Rajasekaran R, Muthusamy V, Hossain F, Natesan S (2019) Marker-assisted selection to pyramid the Opaque-2 (O2) and beta-Carotene (crtRB1) genes in maize. Front Genet 10:859
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Li YX, Li CH, Wu X, Qin WW, Li X, Jiao FC, Zhang XJ, Zhang DF, Shi YS, Song YC, Li Y, Wang TY (2016) Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biol 16:81
PubMed
PubMed Central
Google Scholar
Cheng WH, Chourney P (1999) Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize. Theor Appl Genet 98:485–495
CAS
Google Scholar
Cheng WH, Taliercio EW, Chourey PS (1996) The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983
CAS
PubMed
PubMed Central
Google Scholar
Chourey P, Jain M, Li QB, Carlson S (2006) Genetic control of cell wall invertases in developing endosperm of maize. Planta 223:159–167
CAS
PubMed
Google Scholar
Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Nat Acad Sci USA 111:18775–18780
CAS
PubMed
PubMed Central
Google Scholar
Dai D, Ma Z, Song R (2021) Maize kernel development. Mol Breed 41:2
Google Scholar
Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132
CAS
PubMed
Google Scholar
Deng M, Li DQ, Luo JY, Xiao YJ, Liu HJ, Pan QC, Zhang XH, Jin ML, Zhao MC, Yan JB (2017) The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnol J 15:1250–1263
CAS
PubMed
PubMed Central
Google Scholar
Doehlert DC, Felker FC (1987) Characterization and distribution of invertase activity in developing maize (Zea mays) kernels. Physiologia Plantarum. 70:51–57. https://doi.org/10.1111/j.1399-3054.1987.tb08695.x
CAS
Article
Google Scholar
Doll NM, Depege-Fargeix N, Rogowsky PM, Widiez T (2017) Signaling in early maize kernel development. Mol Plant 10:375–388
CAS
PubMed
Google Scholar
Du YF, Liu L, Li MF, Fang S, Shen XM, Chu JF, Zhang ZX (2017) UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytol 214:721–733
CAS
PubMed
Google Scholar
Du YF, Liu L, Peng Y, Li MF, Li YF, Liu D, Li XW, Zhang ZX (2020) UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize. PLoS Genet 16:e1008764
CAS
PubMed
PubMed Central
Google Scholar
Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2:69–74
CAS
PubMed
Google Scholar
Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145
Google Scholar
Fletcher JC (2018) The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization. Plants 7:87
CAS
PubMed Central
Google Scholar
Fu DH, Xiao ML, Hayward A, Fu Y, Liu G, Jiang GJ, Zhang HH (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173
Google Scholar
Gong FP, Wu XL, Zhang HY, Chen YH, Wang W (2015) Making better maize plants for sustainable grain production in a changing climate. Front Plant Sci 6:835
PubMed
PubMed Central
Google Scholar
Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou ZL, Loffler CM, Cooper M, Simmons CR (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65:249–260
CAS
PubMed
Google Scholar
Guo T, Yang F, Li D, Sun K, Luo L, Xiao W, Wang J, Liu Y, Wang S, Wang H, Chen Z (2019) Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.). Mol Breed 39:87
Google Scholar
Hannah LC, Futch B, Bing J, Shaw JR, Boehlein S, Stewart JD, Beiriger R, Georgelis N, Greene T (2012) A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell 24:2352–2363
CAS
PubMed
PubMed Central
Google Scholar
Hannah LC, James M (2008) The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol 19:160–165
CAS
PubMed
Google Scholar
Hannah LC, Shaw JR, Clancy MA, Georgelis N, Boehlein SK (2017) A brittle-2 transgene increases maize yield by acting in maternal tissues to increase seed number. Plant Direct. 1:e00029. https://doi.org/10.1002/Pld3.29
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Lu G, Liu L, Raihan MS, Xu JT, Jian LM, Zhao LX, Tran TM, Zhang QH, Liu J, Li WQ, Wei CX, Braun DM, Li Q, Fernie AR, Jackson D, Yan JB (2020) The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that affects photosynthesis and grain filling. Plant Physiol 183:1696–1709
CAS
PubMed
PubMed Central
Google Scholar
Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu QY, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jonsson H, Jackson D (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791
CAS
PubMed
Google Scholar
Je BI, Xu F, Wu QY, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife 7:e35673
PubMed
PubMed Central
Google Scholar
Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1934
CAS
PubMed
PubMed Central
Google Scholar
Jia HT, Li MF, Li WY, Liu L, Jian YA, Yang ZX, Shen XM, Ning Q, Du YF, Zhao R, Jackson D, Yang XH, Zhang ZX (2020) A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun 11:988
CAS
PubMed
PubMed Central
Google Scholar
Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162:1965–1977
CAS
PubMed
PubMed Central
Google Scholar
Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 6:541–544
Google Scholar
Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and LatinAmerica in 2055. Global Env Chang 13:51–59
Google Scholar
Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74:265–272
Google Scholar
Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong JH, Xiao LT, Zhang HX (2013a) Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J 11:1080–1091
CAS
PubMed
Google Scholar
Li H, Peng ZY, Yang XH, Wang WD, Fu JJ, Wang JH, Han YJ, Chai YC, Guo TT, Yang N, Liu J, Warburton ML, Cheng YB, Hao XM, Zhang P, Zhao JY, Liu YJ, Wang GY, Li JS, Yan JB (2013b) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–72
CAS
PubMed
Google Scholar
Li JK, Fu J, Chen Y, Fan KJ, He C, Zhang ZQ, Li L, Liu YJ, Zheng J, Ren DT, Wang GY (2017) The U6 biogenesis-like 1 plays an important role in maize kernel and seedling development by affecting the 3' end processing of U6 snRNA. Mol Plant 10:470–482
CAS
PubMed
Google Scholar
Li N, Lin B, Wang H, Li X, Yang F, Ding X, Yan J, Chu Z (2019) Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 51:1540–1548
CAS
PubMed
Google Scholar
Li Q, Li L, Yang XH, Warburton ML, Bai GH, Dai JR, Li JS, Yan JB (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143
PubMed
PubMed Central
Google Scholar
Li Q, Yang XH, Bai GH, Warburton ML, Mahuku G, Gore M, Dai JR, Li JS, Yan JB (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763
CAS
PubMed
Google Scholar
Li X, Li YX, Chen L, Wu X, Qin WW, Song YC, Zhang DF, Wang TY, Li Y, Shi YS (2016) Fine mapping of qKW7, a major QTL for kernel weight and kernel width in maize, confirmed by the combined analytic approaches of linkage and association analysis. Euphytica 210:221–232
CAS
Google Scholar
Li YH, Zheng LY, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Gene Dev 22:1331–1336
CAS
PubMed
PubMed Central
Google Scholar
Liang L, Zhou L, Tang Y, Li N, Song T, Shao W, Zhang Z, Cai P, Feng F, Ma Y, Yao D, Feng Y, Ma Z, Zhao H, Song R (2019) A sequence-indexed mutator insertional library for maize functional genomics study. Plant Physiol 181:1404–1414
CAS
PubMed
PubMed Central
Google Scholar
Liu HJ, Jian LM, Xu JT, Zhang QH, Zhang ML, Jin ML, Peng Y, Yan JL, Han BZ, Liu J, Gao F, Liu XG, Huang L, Wei WJ, Ding YX, Yang XF, Li ZX, Zhang ML, Sun JM, Bai MJ, Song WH, Chen HM, Sun XA, Li WQ, Lu YM, Liu Y, Zhao JR, Qian YW, Jackson D, Fernie AR, Yan JB (2020a) High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32:1397–1413
CAS
PubMed
PubMed Central
Google Scholar
Liu HJ, Luo X, Niu LY, Xiao YJ, Chen L, Liu J, Wang XQ, Jin ML, Li WQ, Zhang QH, Yan JB (2017a) Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Mol Plant 10:414–426
CAS
PubMed
Google Scholar
Liu J, Deng M, Guo H, Raihan S, Luo JY, Xu YC, Dong XF, Yan JB (2015a) Maize orthologs of rice GS5 and their trans-regulator are associated with kernel development. J Integr Plant Biol 57:943–953
CAS
PubMed
Google Scholar
Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM (2017b) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17034
Google Scholar
Liu L, Du YF, Shen XM, Li MF, Sun W, Huang J, Liu ZJ, Tao YS, Zheng YL, Yan JB, Zhang ZX (2015b) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11:e1005670
PubMed
PubMed Central
Google Scholar
Liu N, Zhao YJ, Wu JW, Wei YM, Ren RC, Zang J, Zhang WT, Zhang L, Shen Q, Zhang XS, Zhao XY (2020b) Overexpression of ZmDWF4 improves major agronomic traits and enhances yield in maize. Mol Breed 40:71
CAS
Google Scholar
Liu RX, Jia HT, Cao XL, Huang J, Li F, Tao YS, Qiu FZ, Zheng YL, Zhang ZX (2012) Fine mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-related trait in Zea mays. PLoS ONE 7:e49836
CAS
PubMed
PubMed Central
Google Scholar
Lu X, Liu J, Ren W, Yang Q, Chai Z, Chen R, Wang L, Zhao J, Lang Z, Wang H, Fan Y, Zhao J, Zhang C (2018) Gene-indexed mutations in maize. Mol Plant 11:496–504
CAS
PubMed
Google Scholar
Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol J 16:1918–1927
CAS
PubMed
PubMed Central
Google Scholar
Mayer M, Holker AC, Gonzalez-Segovia E, Bauer E, Presterl T, Ouzunova M, Melchinger AE, Schon CC (2020) Discovery of beneficial haplotypes for complex traits in maize landraces. Nat Commun 11:4954
CAS
PubMed
PubMed Central
Google Scholar
Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S, Gao C, Li J (2017) Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant 10:1238–1241
CAS
PubMed
Google Scholar
Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: Rice "Green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17
CAS
PubMed
Google Scholar
Nguyen KL, Grondin A, Courtois B, Gantet P (2019) Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci 24:263–274
CAS
PubMed
Google Scholar
Pan ZY, Liu M, Xiao ZY, Ren XM, Zhao HL, Gong DM, Liang K, Tan ZD, Shao YQ, Qiu F (2019a) ZmSMK9, a pentatricopeptide repeat protein, is involved in the cis-splicing of nad5, kernel development and plant architecture in maize. Plant Sci 288:110205
CAS
PubMed
Google Scholar
Pan ZY, Ren XM, Zhao HL, Liu L, Tan ZD, Qiu FZ (2019b) A mitochondrial transcription termination factor, ZmSmk3, is required for nad1 intron4 and nad4 intron1 splicing and kernel development in maize. G3-Genes Genom Genet 9:2677–2686
CAS
Google Scholar
Pascual L, Albert E, Sauvage C, Duangjit J, Bouchet JP, Bitton F, Desplat N, Brunel D, Le Paslier MC, Ranc N, Bruguier L, Chauchard B, Verschave P, Causse M (2016) Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120–130
CAS
PubMed
Google Scholar
Pautler M, Eveland AL, LaRue T, Yang F, Weeks R, Lunde C, Je IB, Meeley R, Komatsu M, Vollbrecht E, Sakai H, Jackson D (2015) FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27:104–120
CAS
PubMed
PubMed Central
Google Scholar
Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334
CAS
PubMed
Google Scholar
Qin WW, Li YX, Wu X, Li X, Chen L, Shi YS, Song YC, Zhang DF, Wang TY, Li Y (2016) Fine mapping of qKL1.07, a major QTL for kernel length in maize. Mol Breed 36:8
Google Scholar
Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doeblay J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Nat Acad Sci USA 98:11479–11484
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro C, Hennen-Bierwagen TA, Myers AM, Cline K, Settles AM (2020) Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci USA 117:33177–33185
CAS
PubMed Central
Google Scholar
Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480
CAS
PubMed
Google Scholar
Running MP, Meyerowitz EM (1996) Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 122:1261–1269
CAS
PubMed
Google Scholar
Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304
CAS
PubMed
Google Scholar
Scanlon MJ, Takacs EM (2009) Kernel biology. In: Bennetzen JL, Hake S (eds) Handbook of maize. Springer, New York, pp 121–143
Google Scholar
Sheridan WF, Neuffer MG (1980) Defective kernel mutants of maize II. Morphological and embryo culture studies. Genetics 9:945–960
Google Scholar
Simmons CR, Weers BP, Reimann KS, Abbitt SE, Frank MJ, Wang WY, Wu JR, Shen B, Habben JE (2020) Maize BIG GRAIN1 homolog overexpression increases maize grain yield. Plant Biotechnol J. 18:2304–2315. https://doi.org/10.1111/pbi.13392
CAS
Article
PubMed
PubMed Central
Google Scholar
Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–3248
CAS
PubMed
Google Scholar
Sosso D, Luo DP, Li QB, Sasse J, Yang JL, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47:1489–1493
CAS
PubMed
Google Scholar
Sun F, Ding L, Feng WQ, Cao Y, Lu FZ, Yang QQ, Li WC, Lu YL, Shabek N, Fu FL, Yu HQ (2020) Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. J Exp Bot. https://doi.org/10.1093/jxb/eraa544
Sun SL, Zhou YS, Chen J, Shi JP, Zhao HM, Zhao HN, Song WB, Zhang M, Cui Y, Dong XM, Liu H, Ma XX, Jiao YP, Wang B, Wei XH, Stein JC, Glaubitz JC, Lu F, Yu GL, Liang CZ, Fengler K, Li BL, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai JS (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295
CAS
PubMed
Google Scholar
Tang B, Li YX, Mu ZS, Chen L, Guo HL, Chen ZH, Li CH, Liu XY, Zhang DF, Shi YS, Li Y, Wang TY (2020) Fine mapping and candidate gene analysis of qKW7b, a major QTL for kernel width in maize. Mol Breed 40:67
CAS
Google Scholar
Tran QH, Bui NH, Kappel C, Dau NTN, Nguyen LT, Tran TT, Khanh TD, Trung KH, Lenhard M, Vi SL (2020) Mapping-by-sequencing via MutMap identifies a mutation in ZmCLE7 underlying fasciation in a newly developed EMS mutant population in an elite tropical maize inbred. Genes 11:281
CAS
PubMed Central
Google Scholar
Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita TW, Hwang SK, Satoh H (2014) The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plant Cell Physiol 55:1169–1183
CAS
PubMed
Google Scholar
Vilhar B, Kladnik A, Blejec A, Chourey PS, Dermastia M (2002) Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol 129:23–30
CAS
PubMed
PubMed Central
Google Scholar
Vollbrecht E, Schmidt RJ (2009) Development of the inflorescences. In: Bennetzen JL, Hake S (eds) Handbook of maize. Springer, New York, pp 13–40
Google Scholar
Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:370–1374
Google Scholar
Wang H, Xu ST, Fan YM, Liu NN, Zhan W, Liu HJ, Xiao YJ, Li K, Pan QC, Li WQ, Deng M, Liu J, Jin M, Yang XH, Li JS, Li Q, Yan JB (2018a) Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol J 16:1464–1475
CAS
PubMed
PubMed Central
Google Scholar
Wang HC, Sayyed A, Liu XY, Yang YZ, Sun F, Wang Y, Wang MD, Tan BC (2020) SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. J Integr Plant Biol 62:777–792
CAS
PubMed
Google Scholar
Wang HQ, Wang K, Du QG, Wang YF, Fu ZY, Guo ZY, Kang DM, Li WX, Tang JH (2018b) Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol 218:1233–1246
CAS
PubMed
Google Scholar
Wang J, Lin ZL, Zhang X, Liu HQ, Zhou LN, Zhong SY, Li Y, Zhu C, Lin ZW (2019) krn1, a major quantitative trait locus for kernel row number in maize. New Phytol 223:1634–1646
CAS
PubMed
Google Scholar
Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB, Yang XH, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241
CAS
PubMed
Google Scholar
Weng JF, Li B, Liu CL, Yang XY, Wang HW, Hao ZF, Li MS, Zhang DG, Ci XK, Li XH, Zhang SH (2013) A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.). BMC Plant Biol 13:98
CAS
PubMed
PubMed Central
Google Scholar
Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang JL, Wan JM, Zhai HQ, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Mohamed D, Dowhanik S, Petrella R, Gregis V, Li JR, Wu L, Gazzarrini S (2020b) Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth. Plant Cell 32:1886–1904
CAS
PubMed
PubMed Central
Google Scholar
Wu JR, Lawit SJ, Weers B, Sun JD, Mongar N, Van Hemert J, Melo R, Meng X, Rupe M, Clapp J, Collet KH, Trecker L, Roesler K, Peddicord L, Thomas J, Hunt J, Zhou WG, Hou ZL, Wimmer M, Jantes J, Mo H, Liu L, Wang YW, Walker C, Danilevskaya O, Lafitte RH, Schussler JR, Shen B, Habben JE (2019) Overexpression of zmm28 increases maize grain yield in the field. Proc Natl Acad Sci USA 116:23850–23858
CAS
PubMed
PubMed Central
Google Scholar
Wu LM, Han LQ, Li Q, Wang GY, Zhang HW, Li L (2021) Using interactome big data to crack genetic mysteries and enhance future crop breeding. Mol Plant. 14:77–94. https://doi.org/10.1016/j.molp.2020.12.012
CAS
Article
PubMed
Google Scholar
Wu QY, Regan M, Furukawa H, Jackson D (2018a) Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits. PLoS Genet 14:e1007374
PubMed
PubMed Central
Google Scholar
Wu QY, Xu F, Liu L, Char SN, Ding YZ, Je BI, Schmelz E, Yang B, Jackson D (2020a) The maize heterotrimeric G protein beta subunit controls shoot meristem development and immune responses. Proc Natl Acad Sci USA 117:1799–1805
CAS
PubMed
Google Scholar
Wu ZG, Tang D, Liu K, Miao CB, Zhuo XX, Li YF, Tan XL, Sun MF, Luo Q, Cheng ZK (2018b) Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding. J Exp Bot 69:4703–4713
CAS
PubMed
PubMed Central
Google Scholar
Xie GN, Li ZX, Ran QJ, Wang H, Zhang JR (2018) Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnol J 16:234–244
CAS
PubMed
Google Scholar
Xu CH, Song S, Yang YZ, Lu F, Zhang MD, Sun F, Jia RX, Song RL, Tan BC (2020) DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. Plant J 103:1767–1782
CAS
PubMed
Google Scholar
Xu J, Liu YX, Liu J, Cao MJ, Wang J, Lan H, Xu YB, Lu YL, Pan GT, Rong TZ (2012) The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis. J Integr Plant Biol 54:358–373
CAS
PubMed
Google Scholar
Yang N, Liu J, Gao Q, Gui ST, Chen L, Yang LF, Huang J, Deng TQ, Luo JY, He LJ, Wang YB, Xu PW, Peng Y, Shi ZX, Lan L, Ma ZY, Yang X, Zhang QQ, Bai MZ, Li S, Li WQ, Liu L, Jackson D, Yan JB (2019) Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 51:1052–1059
CAS
PubMed
Google Scholar
Yang Q, Zhang D, Xu M (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol 54:228–237
PubMed
Google Scholar
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y (2020) The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell. https://doi.org/10.1093/plcell/koaa008
Zhang HW, Wang X, Pan QC, Li P, Liu YJ, Lu XD, Zhong WS, Li MQ, Han LQ, Li J, Wang PX, Li DD, Liu Y, Li Q, Yang F, Zhang YM, Wang GY, Li L (2019) QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant 12:426–437
PubMed
Google Scholar
Zhang HW, Uddin MS, Zou C, Xie CX, Xu YB, Li WX (2014) Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. J Integr Plant Biol 56:262–270
CAS
PubMed
Google Scholar
Zhao R, Cai M, Du Y, Zhang Z (2019) Molecular basis of kernel development and kernel number in maize (Zea mays L.). Scientia Agricultura Sinica 52:3495–3506
Google Scholar
Zhou Q, Dong YB, Shi QL, Zhang L, Chen HQ, Hu CH, Li YL (2017) Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Mol Genet Genom 292:871–881
CAS
Google Scholar
Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin J, Liu C, Lin J (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORNYE in Arabidopsis. Plant J 61:223–233
CAS
PubMed
Google Scholar