Skip to main content
Log in

Genetic and molecular control of grain yield in maize

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Understanding the genetic and molecular basis of grain yield is important for maize improvement. Here, we identified 49 consensus quantitative trait loci (cQTL) controlling maize yield-related traits using QTL meta-analysis. Then, we collected yield-related traits associated SNPs detected by association mapping and identified 17 consensus significant loci. Comparing the physical positions of cQTL with those of significant SNPs revealed that 47 significant SNPs were located within 20 cQTL regions. Furthermore, intensive reviews of 31 genes regulating maize yield-related traits found that the functions of many genes were conservative in maize and other plant species. The functional conservation indicated that some of the 575 maize genes (orthologous to 247 genes controlling yield or seed traits in other plant species) might be functionally related to maize yield-related traits, especially the 49 maize orthologous genes in cQTL regions, and 41 orthologous genes close to the physical positions of significant SNPs. In the end, we prospected on the integration of the public sources for exploring the genetic and molecular mechanisms of maize yield-related traits, and on the utilization of genetic and molecular mechanisms for maize improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    CAS  PubMed  Google Scholar 

  • Allier A, Teyssedre S, Lehermeier C, Charcosset A, Moreau L (2020) Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs. Theor Appl Genet 133:201–215

    PubMed  Google Scholar 

  • Andorf C, Beavis WD, Hufford M, Smith S, Suza WP, Wang K, Woodhouse M, Yu JM, Lubberstedt T (2019) Technological advances in maize breeding: past, present and future. Theor Appl Genet 132:817–849

    CAS  PubMed  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    CAS  PubMed  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    CAS  PubMed  Google Scholar 

  • Bleckmann A, Weidtkamp-Peters S, Seidel CAM, Simon R (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152:166–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245

    CAS  PubMed  Google Scholar 

  • Bommert P, Nagasawa NS, Jackson D (2013b) Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 45:334–337

    CAS  PubMed  Google Scholar 

  • Bommert P, Je BI, Goldshmidt A, Jackson D (2013a) The maize Galpha gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:555–558

    CAS  PubMed  Google Scholar 

  • Bortiri E, Jackson D, Hake S (2006) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–171

    CAS  PubMed  Google Scholar 

  • Cairns JE, Prasanna BM (2018) Developing and deploying climate-resilient maize varieties in the developing world. Curr Opin Plant Biol 45:226–230

    PubMed  PubMed Central  Google Scholar 

  • Chandran S, Pukalenthy B, Adhimoolam K, Manickam D, Sampathrajan V, Chocklingam V, Eswaran K, Arunachalam K, Meetei LJ, Rajasekaran R, Muthusamy V, Hossain F, Natesan S (2019) Marker-assisted selection to pyramid the Opaque-2 (O2) and beta-Carotene (crtRB1) genes in maize. Front Genet 10:859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Li YX, Li CH, Wu X, Qin WW, Li X, Jiao FC, Zhang XJ, Zhang DF, Shi YS, Song YC, Li Y, Wang TY (2016) Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biol 16:81

    PubMed  PubMed Central  Google Scholar 

  • Cheng WH, Chourney P (1999) Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize. Theor Appl Genet 98:485–495

    CAS  Google Scholar 

  • Cheng WH, Taliercio EW, Chourey PS (1996) The miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 8:971–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chourey P, Jain M, Li QB, Carlson S (2006) Genetic control of cell wall invertases in developing endosperm of maize. Planta 223:159–167

    CAS  PubMed  Google Scholar 

  • Chuck GS, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Nat Acad Sci USA 111:18775–18780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai D, Ma Z, Song R (2021) Maize kernel development. Mol Breed 41:2

    Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    CAS  PubMed  Google Scholar 

  • Deng M, Li DQ, Luo JY, Xiao YJ, Liu HJ, Pan QC, Zhang XH, Jin ML, Zhao MC, Yan JB (2017) The genetic architecture of amino acids dissection by association and linkage analysis in maize. Plant Biotechnol J 15:1250–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doehlert DC, Felker FC (1987) Characterization and distribution of invertase activity in developing maize (Zea mays) kernels. Physiologia Plantarum. 70:51–57. https://doi.org/10.1111/j.1399-3054.1987.tb08695.x

    Article  CAS  Google Scholar 

  • Doll NM, Depege-Fargeix N, Rogowsky PM, Widiez T (2017) Signaling in early maize kernel development. Mol Plant 10:375–388

    CAS  PubMed  Google Scholar 

  • Du YF, Liu L, Li MF, Fang S, Shen XM, Chu JF, Zhang ZX (2017) UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice. New Phytol 214:721–733

    CAS  PubMed  Google Scholar 

  • Du YF, Liu L, Peng Y, Li MF, Li YF, Liu D, Li XW, Zhang ZX (2020) UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize. PLoS Genet 16:e1008764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2:69–74

    CAS  PubMed  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Google Scholar 

  • Fletcher JC (2018) The CLV-WUS stem cell signaling pathway: a roadmap to crop yield optimization. Plants 7:87

    CAS  PubMed Central  Google Scholar 

  • Fu DH, Xiao ML, Hayward A, Fu Y, Liu G, Jiang GJ, Zhang HH (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173

    Google Scholar 

  • Gong FP, Wu XL, Zhang HY, Chen YH, Wang W (2015) Making better maize plants for sustainable grain production in a changing climate. Front Plant Sci 6:835

    PubMed  PubMed Central  Google Scholar 

  • Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou ZL, Loffler CM, Cooper M, Simmons CR (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65:249–260

    CAS  PubMed  Google Scholar 

  • Guo T, Yang F, Li D, Sun K, Luo L, Xiao W, Wang J, Liu Y, Wang S, Wang H, Chen Z (2019) Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.). Mol Breed 39:87

    Google Scholar 

  • Hannah LC, Futch B, Bing J, Shaw JR, Boehlein S, Stewart JD, Beiriger R, Georgelis N, Greene T (2012) A shrunken-2 transgene increases maize yield by acting in maternal tissues to increase the frequency of seed development. Plant Cell 24:2352–2363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hannah LC, James M (2008) The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol 19:160–165

    CAS  PubMed  Google Scholar 

  • Hannah LC, Shaw JR, Clancy MA, Georgelis N, Boehlein SK (2017) A brittle-2 transgene increases maize yield by acting in maternal tissues to increase seed number. Plant Direct. 1:e00029. https://doi.org/10.1002/Pld3.29

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Lu G, Liu L, Raihan MS, Xu JT, Jian LM, Zhao LX, Tran TM, Zhang QH, Liu J, Li WQ, Wei CX, Braun DM, Li Q, Fernie AR, Jackson D, Yan JB (2020) The kernel size-related quantitative trait locus qKW9 encodes a pentatricopeptide repeat protein that affects photosynthesis and grain filling. Plant Physiol 183:1696–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu QY, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jonsson H, Jackson D (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791

    CAS  PubMed  Google Scholar 

  • Je BI, Xu F, Wu QY, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife 7:e35673

    PubMed  PubMed Central  Google Scholar 

  • Jeong S, Trotochaud AE, Clark SE (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11:1925–1934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia HT, Li MF, Li WY, Liu L, Jian YA, Yang ZX, Shen XM, Ning Q, Du YF, Zhao R, Jackson D, Yang XH, Zhang ZX (2020) A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun 11:988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH (2013) Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol 162:1965–1977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 6:541–544

    Google Scholar 

  • Jones PG, Thornton PK (2003) The potential impacts of climate change on maize production in Africa and LatinAmerica in 2055. Global Env Chang 13:51–59

    Google Scholar 

  • Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74:265–272

    Google Scholar 

  • Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong JH, Xiao LT, Zhang HX (2013a) Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J 11:1080–1091

    CAS  PubMed  Google Scholar 

  • Li H, Peng ZY, Yang XH, Wang WD, Fu JJ, Wang JH, Han YJ, Chai YC, Guo TT, Yang N, Liu J, Warburton ML, Cheng YB, Hao XM, Zhang P, Zhao JY, Liu YJ, Wang GY, Li JS, Yan JB (2013b) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–72

    CAS  PubMed  Google Scholar 

  • Li JK, Fu J, Chen Y, Fan KJ, He C, Zhang ZQ, Li L, Liu YJ, Zheng J, Ren DT, Wang GY (2017) The U6 biogenesis-like 1 plays an important role in maize kernel and seedling development by affecting the 3' end processing of U6 snRNA. Mol Plant 10:470–482

    CAS  PubMed  Google Scholar 

  • Li N, Lin B, Wang H, Li X, Yang F, Ding X, Yan J, Chu Z (2019) Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat Genet 51:1540–1548

    CAS  PubMed  Google Scholar 

  • Li Q, Li L, Yang XH, Warburton ML, Bai GH, Dai JR, Li JS, Yan JB (2010a) Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol 10:143

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang XH, Bai GH, Warburton ML, Mahuku G, Gore M, Dai JR, Li JS, Yan JB (2010b) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763

    CAS  PubMed  Google Scholar 

  • Li X, Li YX, Chen L, Wu X, Qin WW, Song YC, Zhang DF, Wang TY, Li Y, Shi YS (2016) Fine mapping of qKW7, a major QTL for kernel weight and kernel width in maize, confirmed by the combined analytic approaches of linkage and association analysis. Euphytica 210:221–232

    CAS  Google Scholar 

  • Li YH, Zheng LY, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Gene Dev 22:1331–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, Zhou L, Tang Y, Li N, Song T, Shao W, Zhang Z, Cai P, Feng F, Ma Y, Yao D, Feng Y, Ma Z, Zhao H, Song R (2019) A sequence-indexed mutator insertional library for maize functional genomics study. Plant Physiol 181:1404–1414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HJ, Jian LM, Xu JT, Zhang QH, Zhang ML, Jin ML, Peng Y, Yan JL, Han BZ, Liu J, Gao F, Liu XG, Huang L, Wei WJ, Ding YX, Yang XF, Li ZX, Zhang ML, Sun JM, Bai MJ, Song WH, Chen HM, Sun XA, Li WQ, Lu YM, Liu Y, Zhao JR, Qian YW, Jackson D, Fernie AR, Yan JB (2020a) High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32:1397–1413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HJ, Luo X, Niu LY, Xiao YJ, Chen L, Liu J, Wang XQ, Jin ML, Li WQ, Zhang QH, Yan JB (2017a) Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Mol Plant 10:414–426

    CAS  PubMed  Google Scholar 

  • Liu J, Deng M, Guo H, Raihan S, Luo JY, Xu YC, Dong XF, Yan JB (2015a) Maize orthologs of rice GS5 and their trans-regulator are associated with kernel development. J Integr Plant Biol 57:943–953

    CAS  PubMed  Google Scholar 

  • Liu JF, Chen J, Zheng XM, Wu FQ, Lin QB, Heng YQ, Tian P, Cheng ZJ, Yu XW, Zhou KN, Zhang X, Guo XP, Wang JL, Wang HY, Wan JM (2017b) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17034

    Google Scholar 

  • Liu L, Du YF, Shen XM, Li MF, Sun W, Huang J, Liu ZJ, Tao YS, Zheng YL, Yan JB, Zhang ZX (2015b) KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11:e1005670

    PubMed  PubMed Central  Google Scholar 

  • Liu N, Zhao YJ, Wu JW, Wei YM, Ren RC, Zang J, Zhang WT, Zhang L, Shen Q, Zhang XS, Zhao XY (2020b) Overexpression of ZmDWF4 improves major agronomic traits and enhances yield in maize. Mol Breed 40:71

    CAS  Google Scholar 

  • Liu RX, Jia HT, Cao XL, Huang J, Li F, Tao YS, Qiu FZ, Zheng YL, Zhang ZX (2012) Fine mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-related trait in Zea mays. PLoS ONE 7:e49836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Liu J, Ren W, Yang Q, Chai Z, Chen R, Wang L, Zhao J, Lang Z, Wang H, Fan Y, Zhao J, Zhang C (2018) Gene-indexed mutations in maize. Mol Plant 11:496–504

    CAS  PubMed  Google Scholar 

  • Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Cermak T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol J 16:1918–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer M, Holker AC, Gonzalez-Segovia E, Bauer E, Presterl T, Ouzunova M, Melchinger AE, Schon CC (2020) Discovery of beneficial haplotypes for complex traits in maize landraces. Nat Commun 11:4954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Yu H, Zhang Y, Zhuang F, Song X, Gao S, Gao C, Li J (2017) Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol Plant 10:1238–1241

    CAS  PubMed  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: Rice "Green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    CAS  PubMed  Google Scholar 

  • Nguyen KL, Grondin A, Courtois B, Gantet P (2019) Next-generation sequencing accelerates crop gene discovery. Trends Plant Sci 24:263–274

    CAS  PubMed  Google Scholar 

  • Pan ZY, Liu M, Xiao ZY, Ren XM, Zhao HL, Gong DM, Liang K, Tan ZD, Shao YQ, Qiu F (2019a) ZmSMK9, a pentatricopeptide repeat protein, is involved in the cis-splicing of nad5, kernel development and plant architecture in maize. Plant Sci 288:110205

    CAS  PubMed  Google Scholar 

  • Pan ZY, Ren XM, Zhao HL, Liu L, Tan ZD, Qiu FZ (2019b) A mitochondrial transcription termination factor, ZmSmk3, is required for nad1 intron4 and nad4 intron1 splicing and kernel development in maize. G3-Genes Genom Genet 9:2677–2686

    CAS  Google Scholar 

  • Pascual L, Albert E, Sauvage C, Duangjit J, Bouchet JP, Bitton F, Desplat N, Brunel D, Le Paslier MC, Ranc N, Bruguier L, Chauchard B, Verschave P, Causse M (2016) Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120–130

    CAS  PubMed  Google Scholar 

  • Pautler M, Eveland AL, LaRue T, Yang F, Weeks R, Lunde C, Je IB, Meeley R, Komatsu M, Vollbrecht E, Sakai H, Jackson D (2015) FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27:104–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    CAS  PubMed  Google Scholar 

  • Qin WW, Li YX, Wu X, Li X, Chen L, Shi YS, Song YC, Zhang DF, Wang TY, Li Y (2016) Fine mapping of qKL1.07, a major QTL for kernel length in maize. Mol Breed 36:8

    Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doeblay J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Nat Acad Sci USA 98:11479–11484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro C, Hennen-Bierwagen TA, Myers AM, Cline K, Settles AM (2020) Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc Natl Acad Sci USA 117:33177–33185

    CAS  PubMed Central  Google Scholar 

  • Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    CAS  PubMed  Google Scholar 

  • Running MP, Meyerowitz EM (1996) Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 122:1261–1269

    CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    CAS  PubMed  Google Scholar 

  • Scanlon MJ, Takacs EM (2009) Kernel biology. In: Bennetzen JL, Hake S (eds) Handbook of maize. Springer, New York, pp 121–143

    Google Scholar 

  • Sheridan WF, Neuffer MG (1980) Defective kernel mutants of maize II. Morphological and embryo culture studies. Genetics 9:945–960

    Google Scholar 

  • Simmons CR, Weers BP, Reimann KS, Abbitt SE, Frank MJ, Wang WY, Wu JR, Shen B, Habben JE (2020) Maize BIG GRAIN1 homolog overexpression increases maize grain yield. Plant Biotechnol J. 18:2304–2315. https://doi.org/10.1111/pbi.13392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–3248

    CAS  PubMed  Google Scholar 

  • Sosso D, Luo DP, Li QB, Sasse J, Yang JL, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47:1489–1493

    CAS  PubMed  Google Scholar 

  • Sun F, Ding L, Feng WQ, Cao Y, Lu FZ, Yang QQ, Li WC, Lu YL, Shabek N, Fu FL, Yu HQ (2020) Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. J Exp Bot. https://doi.org/10.1093/jxb/eraa544

  • Sun SL, Zhou YS, Chen J, Shi JP, Zhao HM, Zhao HN, Song WB, Zhang M, Cui Y, Dong XM, Liu H, Ma XX, Jiao YP, Wang B, Wei XH, Stein JC, Glaubitz JC, Lu F, Yu GL, Liang CZ, Fengler K, Li BL, Rafalski A, Schnable PS, Ware DH, Buckler ES, Lai JS (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289–1295

    CAS  PubMed  Google Scholar 

  • Tang B, Li YX, Mu ZS, Chen L, Guo HL, Chen ZH, Li CH, Liu XY, Zhang DF, Shi YS, Li Y, Wang TY (2020) Fine mapping and candidate gene analysis of qKW7b, a major QTL for kernel width in maize. Mol Breed 40:67

    CAS  Google Scholar 

  • Tran QH, Bui NH, Kappel C, Dau NTN, Nguyen LT, Tran TT, Khanh TD, Trung KH, Lenhard M, Vi SL (2020) Mapping-by-sequencing via MutMap identifies a mutation in ZmCLE7 underlying fasciation in a newly developed EMS mutant population in an elite tropical maize inbred. Genes 11:281

    CAS  PubMed Central  Google Scholar 

  • Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita TW, Hwang SK, Satoh H (2014) The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plant Cell Physiol 55:1169–1183

    CAS  PubMed  Google Scholar 

  • Vilhar B, Kladnik A, Blejec A, Chourey PS, Dermastia M (2002) Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol 129:23–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollbrecht E, Schmidt RJ (2009) Development of the inflorescences. In: Bennetzen JL, Hake S (eds) Handbook of maize. Springer, New York, pp 13–40

    Google Scholar 

  • Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:370–1374

    Google Scholar 

  • Wang H, Xu ST, Fan YM, Liu NN, Zhan W, Liu HJ, Xiao YJ, Li K, Pan QC, Li WQ, Deng M, Liu J, Jin M, Yang XH, Li JS, Li Q, Yan JB (2018a) Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol J 16:1464–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HC, Sayyed A, Liu XY, Yang YZ, Sun F, Wang Y, Wang MD, Tan BC (2020) SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. J Integr Plant Biol 62:777–792

    CAS  PubMed  Google Scholar 

  • Wang HQ, Wang K, Du QG, Wang YF, Fu ZY, Guo ZY, Kang DM, Li WX, Tang JH (2018b) Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol 218:1233–1246

    CAS  PubMed  Google Scholar 

  • Wang J, Lin ZL, Zhang X, Liu HQ, Zhou LN, Zhong SY, Li Y, Zhu C, Lin ZW (2019) krn1, a major quantitative trait locus for kernel row number in maize. New Phytol 223:1634–1646

    CAS  PubMed  Google Scholar 

  • Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB, Yang XH, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241

    CAS  PubMed  Google Scholar 

  • Weng JF, Li B, Liu CL, Yang XY, Wang HW, Hao ZF, Li MS, Zhang DG, Ci XK, Li XH, Zhang SH (2013) A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.). BMC Plant Biol 13:98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang JL, Wan JM, Zhai HQ, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Mohamed D, Dowhanik S, Petrella R, Gregis V, Li JR, Wu L, Gazzarrini S (2020b) Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth. Plant Cell 32:1886–1904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JR, Lawit SJ, Weers B, Sun JD, Mongar N, Van Hemert J, Melo R, Meng X, Rupe M, Clapp J, Collet KH, Trecker L, Roesler K, Peddicord L, Thomas J, Hunt J, Zhou WG, Hou ZL, Wimmer M, Jantes J, Mo H, Liu L, Wang YW, Walker C, Danilevskaya O, Lafitte RH, Schussler JR, Shen B, Habben JE (2019) Overexpression of zmm28 increases maize grain yield in the field. Proc Natl Acad Sci USA 116:23850–23858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LM, Han LQ, Li Q, Wang GY, Zhang HW, Li L (2021) Using interactome big data to crack genetic mysteries and enhance future crop breeding. Mol Plant. 14:77–94. https://doi.org/10.1016/j.molp.2020.12.012

    Article  CAS  PubMed  Google Scholar 

  • Wu QY, Regan M, Furukawa H, Jackson D (2018a) Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits. PLoS Genet 14:e1007374

    PubMed  PubMed Central  Google Scholar 

  • Wu QY, Xu F, Liu L, Char SN, Ding YZ, Je BI, Schmelz E, Yang B, Jackson D (2020a) The maize heterotrimeric G protein beta subunit controls shoot meristem development and immune responses. Proc Natl Acad Sci USA 117:1799–1805

    CAS  PubMed  Google Scholar 

  • Wu ZG, Tang D, Liu K, Miao CB, Zhuo XX, Li YF, Tan XL, Sun MF, Luo Q, Cheng ZK (2018b) Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding. J Exp Bot 69:4703–4713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie GN, Li ZX, Ran QJ, Wang H, Zhang JR (2018) Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnol J 16:234–244

    CAS  PubMed  Google Scholar 

  • Xu CH, Song S, Yang YZ, Lu F, Zhang MD, Sun F, Jia RX, Song RL, Tan BC (2020) DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. Plant J 103:1767–1782

    CAS  PubMed  Google Scholar 

  • Xu J, Liu YX, Liu J, Cao MJ, Wang J, Lan H, Xu YB, Lu YL, Pan GT, Rong TZ (2012) The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis. J Integr Plant Biol 54:358–373

    CAS  PubMed  Google Scholar 

  • Yang N, Liu J, Gao Q, Gui ST, Chen L, Yang LF, Huang J, Deng TQ, Luo JY, He LJ, Wang YB, Xu PW, Peng Y, Shi ZX, Lan L, Ma ZY, Yang X, Zhang QQ, Bai MZ, Li S, Li WQ, Liu L, Jackson D, Yan JB (2019) Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 51:1052–1059

    CAS  PubMed  Google Scholar 

  • Yang Q, Zhang D, Xu M (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol 54:228–237

    PubMed  Google Scholar 

  • Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y (2020) The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell. https://doi.org/10.1093/plcell/koaa008

  • Zhang HW, Wang X, Pan QC, Li P, Liu YJ, Lu XD, Zhong WS, Li MQ, Han LQ, Li J, Wang PX, Li DD, Liu Y, Li Q, Yang F, Zhang YM, Wang GY, Li L (2019) QTG-Seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant 12:426–437

    PubMed  Google Scholar 

  • Zhang HW, Uddin MS, Zou C, Xie CX, Xu YB, Li WX (2014) Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize. J Integr Plant Biol 56:262–270

    CAS  PubMed  Google Scholar 

  • Zhao R, Cai M, Du Y, Zhang Z (2019) Molecular basis of kernel development and kernel number in maize (Zea mays L.). Scientia Agricultura Sinica 52:3495–3506

    Google Scholar 

  • Zhou Q, Dong YB, Shi QL, Zhang L, Chen HQ, Hu CH, Li YL (2017) Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Mol Genet Genom 292:871–881

    CAS  Google Scholar 

  • Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin J, Liu C, Lin J (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORNYE in Arabidopsis. Plant J 61:223–233

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2016YFD0101803) and the Chinese Academy of Agricultural Sciences (CAAS) Innovation Project.

Author information

Authors and Affiliations

Authors

Contributions

Guoying Wang and Hongwei Zhang discussed and created the review’s outline; Hongwei Zhang, Yantian Lu, and Yuting Ma collected and analyzed the data; Hongwei Zhang and Guoying Wang wrote the manuscript; Guoying Wang, Junjie Fu, Hongwei Zhang, Yantian Lu, and Yuting Ma edited the manuscript.

Corresponding author

Correspondence to Guoying Wang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consented for publication.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Maize Genetics, Genomics and Sustainable Improvement

Supplementary Information

ESM 1

(XLSX 17 kb)

ESM 2

(XLSX 49 kb)

ESM 3

(DOCX 22 kb)

ESM 4

(DOCX 59 kb)

ESM 5

(XLSX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Lu, Y., Ma, Y. et al. Genetic and molecular control of grain yield in maize. Mol Breeding 41, 18 (2021). https://doi.org/10.1007/s11032-021-01214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01214-3

Keywords

Navigation