A cotton germin-like protein GbGLP2 controls fiber length via regulating genes involved in secondary cell wall synthesis

Abstract

Cotton is not only a natural fiber crop, but also an important economic crop in China. The cultivation of cotton with longer, stronger, and finer fiber has been the goal of cotton breeders. Germin-like proteins (GLPs) is a group of protein family with cupin domain, which mainly acts as an enzyme. However, the function of GLPs involved in regulating cotton fiber development is rarely understood. Here, we identified a gene named GbGLP2 from the G. barbadense cDNA library and elucidated its function negatively regulating fiber elongation that resulted in shorter fiber. The transcripts of GbGLP2 were mainly abundant in the elongating fiber of 10 days post-anthesis (DPA). GbGLP2 shared 99.8% similarity with GhGLP1. RNAi silencing of the homolog GhGLP1 in G. hirsutum accession YZ-1 produced longer fiber relative to the control. Enhancing the expression of GbGLP2 significantly reduced fiber length and strength. Through RNA-seq analysis between RNAi and WT lines, 566 genes differentially expressed were identified, of which 113 genes were downregulated and 453 genes were upregulated in the RNAi lines. Surprisingly, most of the downregulated genes participated in secondary cell wall biosynthesis, including cellulose synthase genes (CESA4, CESA7, and CESA8), hemicellulose biosynthesis genes (IRX9, COBL4) and transcription factors (MYB46, MYB86). Simultaneously, the transcriptome comparison between 30 cotton varieties with much longer fiber and 30 varieties with much shorter fiber revealed that the above downregulated genes were markedly decreased in long fiber. Taken together, these results suggest that knockdown of GhGLP1 promotes fiber elongation via delaying secondary cell wall thickening stage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. P Natl Acad Sci USA 92:9353–9357. https://doi.org/10.1073/pnas.92.20.9353

    CAS  Article  Google Scholar 

  2. Avci U, Pattathil S, Singh B, Brown VL, Hahn MG, Haigler CH (2013) Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS One 8:e56315. https://doi.org/10.1371/journal.pone.0056315

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Bioph Res Co 394:178–183. https://doi.org/10.1016/j.bbrc.2010.02.142

    CAS  Article  Google Scholar 

  4. Barman AR, Banerjee J (2015) Versatility of germin-like proteins in their sequences, expressions, and functions. Functional Integrative Genom 15:533–548. https://doi.org/10.1007/s10142-015-0454-z

    CAS  Article  Google Scholar 

  5. Beasley CA (1979) Cellulose content in fibers of cottons which differ in their lint lengths and extent of fuzz. Physiol Plantarum 45:77–82. https://doi.org/10.1111/j.1399-3054.1979.tb01667.x

    CAS  Article  Google Scholar 

  6. Beracochea VC, Almasia NI, Peluffo L, Nahirñak V, Hopp EH, Paniego N, Heinz RA, Vazquez-Rovere C, Lia VV (2015) Sunflower germin-like protein HaGLP1 promotes ROS accumulation and enhances protection against fungal pathogens in transgenic Arabidopsis thaliana. Plant Cell Rep 34:1717–1733. https://doi.org/10.1007/s00299-015-1819-4

    CAS  Article  PubMed  Google Scholar 

  7. Berna A, Bernier F (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol 39:539–549. https://doi.org/10.1023/a:1006123432157

    CAS  Article  PubMed  Google Scholar 

  8. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Brophy A (1984) A BASIC program for Tukey’s multiple comparison procedure. Behav Res Methods 16:67–68. https://doi.org/10.3758/BF03201055

    Article  Google Scholar 

  10. Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041. https://doi.org/10.1105/tpc.9.7.1031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Deng L, Xiang-Mei R, Jie Z, Ya-Jie W, Xiu-Lan W, Xue-Bao L (2013) Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol 199:695–707. https://doi.org/10.1111/nph.12309

    CAS  Article  Google Scholar 

  12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    CAS  Article  PubMed  Google Scholar 

  13. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420. https://doi.org/10.1093/pcp/pcf164

    CAS  Article  PubMed  Google Scholar 

  14. Dunwell JM, Gibbings JG, Mahmood T, Naqvi SMS (2008) Germin and germin-like proteins: evolution, structure, and function. Crit Rev Plant Sci 27:342–375. https://doi.org/10.1080/07352680802333938

    CAS  Article  Google Scholar 

  15. Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446. https://doi.org/10.1038/nature01485

    CAS  Article  PubMed  Google Scholar 

  16. Gucciardo S, Wisniewski JP, Brewin NJ, Bornemann S (2007) A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor. J Exp Bot 58:1161–1171. https://doi.org/10.1093/jxb/erl282

    CAS  Article  PubMed  Google Scholar 

  17. Guo K, du X, Tu L, Tang W, Wang P, Wang M, Liu Z, Zhang X (2016) Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). J Exp Bot 67:3289–3301. https://doi.org/10.1093/jxb/erw146

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104. https://doi.org/10.3389/fpls.2012.00104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Helliwell C, Wesley S, Wielopolska A, Waterhouse P (2002) High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225. https://doi.org/10.1071/FP02033

    CAS  Article  PubMed  Google Scholar 

  20. Ilyas M, Rasheed A, Mahmood T (2016) Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches. Biotechnol Lett 38:1405–1421. https://doi.org/10.1007/s10529-016-2129-9

    CAS  Article  PubMed  Google Scholar 

  21. Ilyas M, Akhtar W, Rehman S, Naqvi SMS, Mahmood T (2019) Functional characterization of the rice root Germin-like protein gene-1 (OsRGLP1) promoter in Nicotiana tabacum. 3. Biotech 9:130. https://doi.org/10.1007/s13205-019-1644-5

    Article  Google Scholar 

  22. Jin S, Liang S, Zhang X, Nie Y, Guo X (2006) An efficient grafting system for transgenic plant recovery in cotton ( Gossypium hirsutum L.). Plant Cell Tiss Org 85:181–185. https://doi.org/10.1007/s11240-005-9068-9

    Article  Google Scholar 

  23. Khuri S, Bakker FT, Dunwell JM (2001) Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 18:593–605. https://doi.org/10.1093/oxfordjournals.molbev.a003840

    CAS  Article  PubMed  Google Scholar 

  24. Kim HJ, Triplett BA (2004) Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218:516–524. https://doi.org/10.1007/s00425-003-1133-1

    CAS  Article  PubMed  Google Scholar 

  25. Kim HJ, Pesacreta TC, Triplett BA (2004) Cotton-fiber germin-like protein. II: Immunolocalization, purification, and functional analysis. Planta 218:525–535. https://doi.org/10.1007/s00425-003-1134-0

    CAS  Article  PubMed  Google Scholar 

  26. Kim WC, Ko JH, Kim JY, Kim J, Bae HJ, Han KH (2013) MYB46 directly regulates the gene expression of secondary wall-associated cellulose synthases in Arabidopsis. The Plant journal : for cell and molecular biology 73:26–36. https://doi.org/10.1111/j.1365-313x.2012.05124.x

    CAS  Article  Google Scholar 

  27. Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M, Delmer D (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. P Natl Acad Sci USA 99:11109–11114. https://doi.org/10.1073/pnas.162077099

    CAS  Article  Google Scholar 

  28. Lee C, O'Neill MA, Tsumuraya Y, Darvill AG, Ye ZH (2007) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48:1624–1634. https://doi.org/10.1093/pcp/pcm135

    CAS  Article  PubMed  Google Scholar 

  29. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859–875. https://doi.org/10.1105/tpc.104.029629

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Li L, Wang XL, Huang GQ, Li XB (2007) Molecular characterization of cotton GhTUA9 gene specifically expressed in fibre and involved in cell elongation. J Exp Bot 58:3227–3238. https://doi.org/10.1093/jxb/erm167

    CAS  Article  PubMed  Google Scholar 

  32. Li J, Wang M, Li Y, Zhang Q, Lindsey K, Daniell H, Jin S, Zhang X (2018) Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation (SRA) process. Plant Biotechnol J 17:435–450. https://doi.org/10.1111/pbi.12988

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Li Z, Wang P, You C, Yu J, Zhang X, Yan F, Ye Z, Shen C, Li B, Guo K, Liu N, Thyssen GN, Fang DD, Lindsey K, Zhang X, Wang M, Tu L (2020) Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. The New phytologist 226:1738–1752. https://doi.org/10.1111/nph.16468

    CAS  Article  PubMed  Google Scholar 

  34. Liu D, Tu L, Wang L, Li Y, Zhu L, Zhang X (2008) Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep 27:1385–1394. https://doi.org/10.1007/s00299-008-0545-6

    CAS  Article  PubMed  Google Scholar 

  35. Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol 140:1126–1136. https://doi.org/10.1104/pp.105.073700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296. https://doi.org/10.1104/pp.108.128348

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. McCahill IW, Hazen SP (2019) Regulation of cell wall thickening by a Medley of mechanisms. Trends Plant Sci 24:853–866. https://doi.org/10.1016/j.tplants.2019.05.012

    CAS  Article  PubMed  Google Scholar 

  38. Meents MJ, Motani S, Mansfield SD, Samuels AL (2019) Organization of xylan production in the golgi during secondary cell wall biosynthesis. Plant Physiol 181:527–546. https://doi.org/10.1104/pp.19.00715

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734. https://doi.org/10.1038/35021067

    CAS  Article  PubMed  Google Scholar 

  40. Pei Y, Li X, Zhu Y, Ge X, Sun Y, Liu N, Jia Y, Li F, Hou Y (2019) GhABP19, a novel germin-like protein from Gossypium hirsutum, plays an important role in the regulation of resistance to Verticillium and Fusarium wilt pathogens. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00583

  41. Potikha TS, Collins CC, Johnson DI, Delmer DP, Levin A (1999) The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol 119:849–858. https://doi.org/10.1104/pp.119.3.849

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Qin YM, Zhu YX (2011) How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14:106–111. https://doi.org/10.1016/j.pbi.2010.09.010

    CAS  Article  PubMed  Google Scholar 

  43. Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143. https://doi.org/10.1023/A:1010627314782

    CAS  Article  PubMed  Google Scholar 

  44. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez-Lopez M, Baroja-Fernandez E, Zandueta-Criado A, Moreno-Bruna B, Munoz FJ, Akazawa T, Pozueta-Romero J (2001) Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein. FEBS Lett 490:44–48. https://doi.org/10.1016/s0014-5793(01)02135-4

    CAS  Article  PubMed  Google Scholar 

  46. Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60. https://doi.org/10.1105/tpc.13.1.47

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Ruan YL, Xu SM, White R, Furbank RT (2004) Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol 136:4104–4113. https://doi.org/10.1104/pp.104.051540

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Sato K, Suzuki R, Nishikubo N, Takenouchi S, Ito S, Nakano Y, Nakaba S, Sano Y, Funada R, Kajita S, Kitano H, Katayama Y (2010) Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components. Planta 232:257–270. https://doi.org/10.1007/s00425-010-1171-4

    CAS  Article  PubMed  Google Scholar 

  49. Taylor NG, Laurie S, Turner SR (2000) Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 12:2529–2540. https://doi.org/10.1105/tpc.12.12.2529

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R, Handakumbura PP, Xiong G, Wang C, Corwin J, Tsoukalas A, Zhang L, Ware D, Pauly M, Kliebenstein DJ, Dehesh K, Tagkopoulos I, Breton G, Pruneda-Paz JL, Ahnert SE, Kay SA, Hazen SP, Brady SM (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571–575. https://doi.org/10.1038/nature14099

    CAS  Article  PubMed  Google Scholar 

  51. Thompson EW, Lane BG (1980) Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos. J Biol Chem 255:5965–5970. https://doi.org/10.1038/227456a0

    CAS  Article  PubMed  Google Scholar 

  52. Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, Zeng FC, Nie YC, Guo XP, Deng FL, Tan JF, Xu L (2007) Genes expression analyses of sea-island cotton (Gossypium barbadense L.) during fiber development. Plant Cell Rep 26:1309–1320. https://doi.org/10.1007/s00299-007-0337-4

    CAS  Article  PubMed  Google Scholar 

  53. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138. https://doi.org/10.1093/bioinformatics/btp612

    CAS  Article  PubMed  Google Scholar 

  54. Wang F, Xu Z, Sun R, Gong Y, Liu G, Zhang J, Wang L, Zhang C, Fan S, Zhang J (2013) Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Mol Breeding 32:547–562. https://doi.org/10.1007/s11032-013-9888-y

    Article  Google Scholar 

  55. Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587. https://doi.org/10.1038/ng.3807

    CAS  Article  PubMed  Google Scholar 

  56. Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, Li B, Qiu P, Zhang Q, Zhu L, Jin S, Yang X, Min L, Li G, Chen LL, Zheng H, Lindsey K, Lin Z, Udall JA, Zhang X (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51:224–229. https://doi.org/10.1038/s41588-018-0282-x

    CAS  Article  PubMed  Google Scholar 

  57. Wu AM, Hornblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153:542–554. https://doi.org/10.1104/pp.110.154971

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Xu SM, Brill E, Llewellyn DJ, Furbank RT, Ruan YL (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5:430–441. https://doi.org/10.1093/mp/ssr090

    CAS  Article  PubMed  Google Scholar 

  59. Yamahara T, Shiono T, Suzuki T, Tanaka K, Takio S, Sato K, Yamazaki S, Satoh T (1999) Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J Biol Chem 274:33274–33278. https://doi.org/10.1074/jbc.274.47.33274

    CAS  Article  PubMed  Google Scholar 

  60. Yuanjiang T, Lingli M, Guilan G, Jinju D, Lang Y, Chengwei Y (2011) Function of GLP13 in response to plant oxidative stress in Arabidopsis. Chinese Bulletin of Botany 46:147–154. https://doi.org/10.3724/sp.j.1259.2011.00147

    Article  Google Scholar 

  61. Zhang J, Huang GQ, Zou D, Yan JQ, Li Y, Hu S, Li XB (2018) The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. The New phytologist 217:625–640. https://doi.org/10.1111/nph.14864

    CAS  Article  PubMed  Google Scholar 

  62. Zhao J, Bai W, Zeng Q, Song S, Zhang M, Li X, Hou L, Xiao Y, Luo M, Li D, Luo X, Pei Y (2015) Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Mol Breeding 35:60. https://doi.org/10.1007/s11032-015-0232-6

    CAS  Article  Google Scholar 

  63. Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572. https://doi.org/10.1016/j.pbi.2007.09.001

    CAS  Article  PubMed  Google Scholar 

  64. Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R (2017) CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol 17:101. https://doi.org/10.1186/s12870-017-1039-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Zimmermann G, Baumlein H, Mock HP, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142:181–192. https://doi.org/10.1104/pp.106.083824

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China (31671739) and National Transgenic Plant Research of China (2016ZX08005-003) to Lili Tu.

Author information

Affiliations

Authors

Contributions

L.T. designed the project. S.C and J.T cloned the gene. Z.Y constructed the vectors. M.S. performed the experiments and conducted the analysis of RNA-seq data. M.S. wrote the manuscript draft. L.T. revised the manuscript.

Corresponding author

Correspondence to Lili Tu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 381 kb)

ESM 2

(PDF 464 kb)

ESM 3

(PDF 277 kb)

ESM 4

(PDF 433 kb)

ESM 5

(XLSX 22779 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Ye, Z., Tan, J. et al. A cotton germin-like protein GbGLP2 controls fiber length via regulating genes involved in secondary cell wall synthesis. Mol Breeding 40, 98 (2020). https://doi.org/10.1007/s11032-020-01177-x

Download citation

Keywords

  • Cotton
  • GbGLP2
  • GhGLP1
  • Fiber elongation
  • SCW thickening