Skip to main content

Advertisement

Log in

Rice grain quality—traditional traits for high quality rice and health-plus substances

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Rice grain quality is a complex trait that reflects the opinions of producers, processors, sellers and consumers in regard to production, processing, marketing and consumption of the grain. It can be roughly divided into milling quality, appearance quality, cooking and sensory quality, nutrition quality and hygiene quality. Milling quality indicates level of recovery of grain products in order of value; appearance quality is reflected in ability to attract buyers; sensory quality and nutritional quality relate to the edible characteristics, and hygiene quality relates to freedom from internal and external contamination. With improving living standards, access to food has shifted from grain to meat, milk, eggs, vegetables and fruits. The demand for food is no longer simply “enough,” but is increasingly “delicious” and “healthy.” In order to meet the needs of consumers and producers, scientists have to understand the genetic basis that determines quality in rice, and breeders and seed companies have to develop rice varieties with high yield, good quality and health benefits. This paper summarizes progress in understanding rice quality by addressing aspects of consumer demand, classification and importance, functional genomics, genetics, breeding and, finally, future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez AM, Adachi T, Nakase M, Aoki N, Nakamura R, Matsuda T, Enzymology M (1995) Classification of rice allergenic protein cDNAs belonging to the α-amylase/trypsin inhibitor gene family. Biochim Biophys Acta - Protein Struct 1251:201–204

    Google Scholar 

  • Ayres N, McClung A, Larkin P, Bligh H, Jones C, Park W (1997) Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm. Theor Appl Genet 94(6–7):773–781

    CAS  Google Scholar 

  • Bao J (2019) Rice starch. In: Bao J (ed) Rice: Chemistry and technology. Elsevier & AACCI. Pp 55-108

  • Bao J, Corke H, Sun M (2006) Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor ApplGenet 113:1171–1183

    CAS  Google Scholar 

  • Bao J, Zhou X, Xu F, He Q, Park YJ (2017) Genome-wide association study of the resistant starch content in rice grains. Starch-Stärke 69:1600343

    Google Scholar 

  • Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31:50–57

    CAS  PubMed  Google Scholar 

  • Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK (2017) Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.). Critical reviews in food science nutrition 57(11):2455–2481

    CAS  PubMed  Google Scholar 

  • Bradbury LM, Fitzgerald TL, Henry RJ, Jin Q, Waters DL (2005) The gene for fragrance in rice. Plant Biotechnol J 3(3):363–370

    CAS  PubMed  Google Scholar 

  • Cai XL, Wang ZY, Xing YY, Zhang JL, Hong MM (1998) Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J 14:459–465

    CAS  PubMed  Google Scholar 

  • Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, Mumm R, Reinke R, Dipti S, Bassinello PZ (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One 9(1):e85106

    PubMed  PubMed Central  Google Scholar 

  • Champagne E, Wood DF, Juliano BO, Bechtel DB (2004) The rice grain and its gross composition. Rice Chem Technol 3:77–107

    Google Scholar 

  • Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Shen Z, Ming L, Li Y, Dan W, Lou G, Peng B, Wu B, Li Y, Zhao D (2018) Genetic basis of variation in rice seed storage protein (albumin, globulin, prolamin, and glutelin) content revealed by genome-wide association analysis. Front Plant Sci 9:612

    PubMed  PubMed Central  Google Scholar 

  • Crofts N, Abe K, Aihara S, Itoh R, Nakamura Y, Itoh K, Fujita N (2012) Lack of starch synthase IIIa and high expression of granule-bound starch synthase I synergistically increase the apparent amylose content in rice endosperm. Plant Sci 193:62–69

    PubMed  Google Scholar 

  • Ding W, Lin L, Zhang B, Xiang X, Wu J, Pan Z, Zhu S (2015) OsKASI, a β-ketoacyl-[acyl carrier protein] synthase I, is involved in root development in rice (Oryza sativa L.). Planta 242:203–213

    CAS  PubMed  Google Scholar 

  • Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694

    CAS  PubMed  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    CAS  PubMed  Google Scholar 

  • Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J-H, Jane J-L (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Lu X, Wang W, Sun S, Li Z, Li H, Ren G (2009) Trait-specific improvement of a cytoplasmic male-sterile line using molecular marker-assisted selection in rice. Crop Sci 49:99–106

    CAS  Google Scholar 

  • Gayen D, Ali N, Ganguly M, Paul S, Datta K, Datta SK (2014) RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell, Tissue Organ Culture 118:229–243

    CAS  Google Scholar 

  • Gravois KA (1994) Diallel analysis of head rice percentage, total milled rice percentage, and rough rice yield. Crop Sci 34:42–45

    Google Scholar 

  • Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465

    CAS  PubMed  Google Scholar 

  • Huang K, Wang D, Duan P, Zhang B, Xu R, Li N, Li Y (2017) WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J 91:849–860

    CAS  PubMed  Google Scholar 

  • Iida S, Miyahara K, Nishio T (1998) Rice [Oryza sativa] mutant lines lacking alpha-globulin. Japn J Breeding

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci U S A 109:19166–19171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Makino T, Ito M, Harada K, Nakada H, Nishida I, Nishimura M, Tokunaga T, Shirao K, Yoshizawa C (2016) Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Sci Plant Nutr 62:327–339

    CAS  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    PubMed  PubMed Central  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, B-i S, Onishi A (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707

    CAS  PubMed  Google Scholar 

  • Jin L, Lu Y, Shao Y, Zhang G, Xiao P, Shen S, Corke H, Bao J (2010) Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice (Oryza sativa L.). J Cereal Sci 51:159–164

    CAS  Google Scholar 

  • Johnson AA, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PLoS One 6(9):e24476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakatsu T, Takaiwa F (2010) Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant Cell physiol 51:1964–1974

    CAS  PubMed  Google Scholar 

  • Kawakatsu T, Yamamoto MP, Hirose S, Yano M, Takaiwa F (2008) Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot 59:4233–4245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakatsu T, Hirose S, Yasuda H, Takaiwa F (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154:1842–1854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kemper EL, Neto GC, Papes F, Moraes KCM, Leite A, Arruda P (1999) The role of Opaque2 in the control of lysine-degrading activities in developing maize endosperm. Plant Cell 11:1981–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Hori K, Yamamoto T, Yano M (2018) Koshihikari: a premium short-grain rice cultivar–its expansion and breeding in Japan. Rice 11:15

    PubMed  PubMed Central  Google Scholar 

  • Kwak HS, Kim M, Lee Y, Jeong Y (2015) Identification of key sensory attributes for consumer acceptance and instrumental quality of aseptic-packaged cooked rice. Int J Food Sci Technol 50:691-699

    Google Scholar 

  • Larkin PD, Park WD (2003) Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice (Oryza sativa L.). Mol Breeding 12:335–339

    CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell Environment 32:408–416

    CAS  PubMed  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009a) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK (2009b) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kim Y-S, Jeon US, Kim Y-K, Schjoerring JK, An G (2012) Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Molecules Cells 33:269–275

    CAS  PubMed  Google Scholar 

  • Li J, Last RL (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 110:51–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266

    CAS  PubMed  Google Scholar 

  • Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X (2014) Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet 46:398

    CAS  PubMed  Google Scholar 

  • Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C (2018) Rice functional genomics research: past decade and future. Mol Plant 11:359–380

    CAS  PubMed  Google Scholar 

  • Limpawattana M, Shewfelt R (2010) Flavor lexicon for sensory descriptive profiling of different rice types. J food Sci 75:S199–S205

    CAS  PubMed  Google Scholar 

  • Lin D-G, Chou S-Y, Wang AZ, Wang Y-W, Kuo S-M, Lai C-C, Chen L-J, Wang C-S (2014) A proteomic study of rice cultivar TNG67 and its high aroma mutant SA0420. Plant Sci 214:20–28

    CAS  PubMed  Google Scholar 

  • Liu H (2016) Checking sstem of corn in Japan and inspiration to us. North Rice 46(2):1–12 (Chinese with English abstract)

    Google Scholar 

  • Liu Q-Q, Li Q-F, Cai X-L, Wang H-M, Tang S-Z, Yu H-X, Wang Z-Y, Gu M-H (2006) Molecular marker-assisted selection for improved cooking and eating quality of two elite parents of hybrid rice. Crop Sci 46:2354–2360

    CAS  Google Scholar 

  • Liu HL, Yin ZJ, Xiao L, Xu YN, Qu LQ (2012) Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. J Exp Bot 63:3279–3287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants 3:17043

    CAS  PubMed  Google Scholar 

  • Liu Q, Han R, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X (2018) G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun 9:852

    PubMed  PubMed Central  Google Scholar 

  • Long X, Liu Q, Chan M, Wang Q, Sun SS (2013) Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnol J 11:490–501

    CAS  PubMed  Google Scholar 

  • Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A (1996) Aroma in rice: genetic analysis of a quantitative trait. Theor Appl Genet 93:1145–1151

    CAS  PubMed  Google Scholar 

  • Lou J, Chen L, Yue G, Lou Q, Mei H, Xiong L, Luo L (2009) QTL mapping of grain quality traits in rice. J Cereal Sci 50:145–151

    CAS  Google Scholar 

  • Lu L, Hu X, Tian S, Deng S, Zhu Z (2016) Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue. Anal Chem Acta 919:11–19

    CAS  Google Scholar 

  • Lyon BG, Champagne ET, Vinyard BT, Windham WR, Barton FE, Webb BD, McClung AM, Moldenhauer KA, Linscombe S, McKenzie KS (1999) Effects of degree of milling, drying condition, and final moisture content on sensory texture of cooked rice. Cereal Chem 76:56–62

    CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acadf Sci 105:9931–9935

    CAS  Google Scholar 

  • Maeda H, Yamaguchi T, Omoteno M, Takarada T, Fujita K, Murata K, Iyama Y, Kojima Y, Morikawa M, Ozaki H (2014) Genetic dissection of black grain rice by the development of a near isogenic line. Breeding Sci 64:134–141

    CAS  Google Scholar 

  • Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci U S A 107(45):19579–19584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meullenet JF, Griffin V, Carson K, Davis G, Davis S, Gross J, Hankins J, Sailer E, Sitakalin C, Suwansri S (2001) Rice external preference mapping for Asian consumers living in the United States. J Sens Stud 16:73–94

    Google Scholar 

  • Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H, Suzuki Y, Sano Y (2008) Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet 116:979–989

    CAS  PubMed  Google Scholar 

  • Mills EC, Jenkins JA, Alcocer MJ, Shewry PR (2004) Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Critical Rev Food Sci Nutr 44:379–407

    CAS  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Francisco PB, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58:213–227

    CAS  PubMed  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    CAS  Google Scholar 

  • Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda T (1996a) Cloning of the rice seed α-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226

    CAS  PubMed  Google Scholar 

  • Nakase M, Hotta H, Adachi T, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda TJG (1996b) Cloning of the rice seed α-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226

    CAS  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogo Y, Wakasa Y, Hirano K, Urisu A, Matsuda T, Takaiwa F (2014) Generation of transgenic rice with reduced content of major and novel high molecular weight allergens. Rice 7:19

    PubMed  PubMed Central  Google Scholar 

  • Oikawa T, Maeda H, Oguchi T, Yamaguchi T, Tanabe N, Ebana K, Yano M, Ebitani T, Izawa T (2015) The birth of a black rice gene and its local spread by introgression. Plant Cell 27:2401–2414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482

    CAS  PubMed  Google Scholar 

  • Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, Gao G, Zhang Q, Luo L, Wang G (2014a) OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5:4847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Wang Y, Liu F, Ren Y, Zhou K, Lv J, Zheng M, Zhao S, Zhang L, Wang C (2014b) FLOURY ENDOSPERM 6 encodes a CBM 48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J 77:917–930

    CAS  PubMed  Google Scholar 

  • Pinson SR, Jia Y, Gibbons JW (2013) Three quantitative trait loci conferring resistance to kernel fissuring in rice identified by selective genotyping in two tropical japonica populations. Crop Sci 53:2434–2443

    Google Scholar 

  • Qi P, Lin Y-S, Song X-J, Shen J-B, Huang W, Shan J-X, Zhu M-Z, Jiang L, Gao J-P, Lin H-X (2012) The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell Res 22:1666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Rao Y, Huang L, Leng Y, Hu J, Lu M, Zhang G, Zhu L, Gao Z, Dong G (2016) Fine mapping identifies a new QTL for brown rice rate in rice (Oryza sativa L.). Rice 9:4

    PubMed  PubMed Central  Google Scholar 

  • Reyes AR, Bonin CP, Houmard NM, Huang S, Malvar TM (2009) Genetic manipulation of lysine catabolism in maize kernels. Plant Mol Biol 69:81–89

    CAS  PubMed  Google Scholar 

  • Ryoo N, Yu C, Park C-S, Baik M-Y, Park IM, Cho M-H, Bhoo SH, An G, Hahn T-R, Jeon J-S (2007a) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep 26:1083–1095

    CAS  PubMed  Google Scholar 

  • Ryoo N, Yu C, Park C-S, Baik M-Y, Park IM, Cho M-H, Bhoo SH, An G, Hahn T-R, J-SJPcr J (2007b) Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep 26:1083–1095

    CAS  PubMed  Google Scholar 

  • Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156:1269–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto W, Ohmori T, Kageyama K, Miyazaki C, Saito A, Murata M, Noda K, Maekawa M (2001) The purple leaf (Pl) locus of rice: the Pl w allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol 42:982–991

    CAS  PubMed  Google Scholar 

  • Santos RS, Araujo Júnior AT, Pegoraro C, Oliveira AC (2017) Dealing with iron metabolism in rice: from breeding for stress tolerance to biofortification. Genetics Mol Biol 40:312–325

    Google Scholar 

  • Sater HM, Pinson SR, Moldenhauer KA, Siebenmorgen TJ, Mason RE, Boyett VA, Edwards JD (2017) Fine mapping of qFIS1-2, a major QTL for kernel fissure resistance in rice. Crop Sci 57:1511–1521

    CAS  Google Scholar 

  • Sato H, Suzuki Y, Sakai M, Imbe T (2002) Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.). Breeding Sci 52:131–135

    CAS  Google Scholar 

  • Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol 133:1111–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh R, Nakamura R, Komatsu A, Oshima M, Teshima R (2011) Proteomic analysis of known and candidate rice allergens between non-transgenic and transgenic plants. Regul Toxicol Pharmacol 59:437–444

    CAS  PubMed  Google Scholar 

  • She K-C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M (2010) A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell 22:3280–3294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Zhu J (1998) Genetic analysis of cytoplasmic and maternal effects for milling quality traits in indica rice. Seed Sci Technol 26:581–488

    Google Scholar 

  • Shi W, Yang Y, Chen S, Xu M (2008a) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breeding 22:185–192

    CAS  Google Scholar 

  • Shi W, Yang Y, Chen S, Xu MJMB (2008b) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol breeding 22:185–192

    CAS  Google Scholar 

  • Shi J, Cao Y, Fan X, Li M, Wang Y, Ming F (2012) A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Mol Breeding 29:743–757

    CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023

    CAS  PubMed  Google Scholar 

  • Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447

    CAS  PubMed  Google Scholar 

  • Singh V, Singh AK, Mohapatra T, Ellur RK (2018) Pusa Basmati 1121–a rice variety with exceptional kernel elongation and volume expansion after cooking. Rice 11:19

    PubMed  PubMed Central  Google Scholar 

  • Son J-S, Do VB, Kim K-O, Cho MS, Suwonsichon T, Valentin D (2013) Consumers’ attitude towards rice cooking processes in Korea, Japan, Thailand and France. Food quality Preference 29:(1):65–75

    Google Scholar 

  • Son J-S, Do VB, Kim K-O, Cho MS, Suwonsichon T, Valentin D (2014) Understanding the effect of culture on food representations using word associations: the case of “rice” and good rice. Food Quality Preference 31:38–48

    Google Scholar 

  • Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623

    CAS  PubMed  Google Scholar 

  • Sperotto RA, Boff T, Duarte GL, Santos LS, Grusak MA, Fett JP (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167:1500–1506

    CAS  PubMed  Google Scholar 

  • Sudha V, Spiegelman D, Hong B, Malik V, Jones C, Wedick NM, Hu FB, Willett W, Bai MR, Ponnalagu MM (2013) Consumer acceptance and preference study (CAPS) on brown and undermilled Indian rice varieties in Chennai, India. J American College Nutr 32:50–57

    CAS  Google Scholar 

  • Sun J-L, Nakagawa H, Karita S, Ohmiya K, Hattori T (1996) Rice embryo globulins: amino-terminal amino acid sequences, cDNA cloning and expression. Plant Cell Physiol 37:612–620

    CAS  PubMed  Google Scholar 

  • Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q (2018) A G-protein pathway determines grain size in rice. Nat Commun 9:851

    PubMed  PubMed Central  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan J, Baisakh N, Oliva N, Parkhi V, Rai M, Torrizo L, Datta K, Datta SK (2005) The screening of rice germplasm, including those transgenic rice lines which accumulate β-carotene in their polished seeds, for their carotenoid profile. Int J Food Sci Technology 40:563–569

    CAS  Google Scholar 

  • Teng B, Zeng R, Wang Y, Liu Z, Zhang Z, Zhu H, Ding X, Li W, Zhang G (2012) Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.). Mol Breeding 30:583–595

    Google Scholar 

  • Thomson M (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breeding Biotechnol Adv 2:195–212

    Google Scholar 

  • Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase α-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a fedback-insensitive mutant of OASA1. Plant Physiol 126:1493–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tran N, Daygon V, Resurreccion A, Cuevas R, Corpuz H, Fitzgerald M (2011) A single nucleotide polymorphism in the waxy gene explains a significant component of gel consistency. Theor Appl Genet 123:519–525

    CAS  PubMed  Google Scholar 

  • Traore K, McClung AM, Chen M-H, Fjellstrom R (2011) Inheritance of flour paste viscosity is associated with a rice waxy gene exon 10 SNP marker. J Cereal Sci 53:37–44

    CAS  Google Scholar 

  • Trusov Y, Chakravorty D, Botella JR (2012) Diversity of heterotrimeric G-protein γ subunits in plants. BMC Res Notes 5:608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urisu A, Yamada K, Masuda S, Komada H, Wada E, Kondo Y, Horiba F, Tsuruta M, Yasaki T, Yamada M (1991) 16-kilodalton rice protein is one of the major allergens in rice grain extract and responsible for cross-allergenicity between cereal grains in the Poaceae family. Int Archives of Allergy Immun 96:244–252

    CAS  Google Scholar 

  • Vanavichit A, Kamolsukyeunyong W, Siangliw M, Siangliw JL, Traprab S, Ruengphayak S, Chaichoompu E, Saensuk C, Phuvanartnarubal E, Toojinda T (2018) Thai Hom Mali Rice: origin and breeding for subsistence rainfed lowland rice system. Rice 11:20

    PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    CAS  PubMed  Google Scholar 

  • Wakasa Y, Hirano K, Urisu A, Matsuda T, Takaiwa F (2011) Generation of transgenic rice lines with reduced contents of multiple potential allergens using a null mutant in combination with an RNA silencing method. Plant Cell Physiol 52:2190–2199

    CAS  PubMed  Google Scholar 

  • Wanchana S, Toojinda T, Tragoonrung S, Vanavichit A (2003) Duplicated coding sequence in the waxy allele of tropical glutinous rice (Oryza sativa L.). Plant Sci 165:1193–1199

    CAS  Google Scholar 

  • Wang L-S, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lettr 269:281–290

    CAS  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950

    CAS  PubMed  Google Scholar 

  • Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949

    CAS  PubMed  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  PubMed  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao F-J (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia D, Zhou H, Liu R, Dan W, Li P, Wu B, Chen J, Wang L, Gao G, Zhang Q (2018) GL3. 3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol Plant 11:754–756

    CAS  PubMed  Google Scholar 

  • Xu J-H, Messing J (2009) Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Applied Gen 119:1397

    CAS  Google Scholar 

  • Xu R, Duan P, Yu H, Zhou Z, Zhang B, Wang R, Li J, Zhang G, Zhuang S, Lyu J (2018) Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant 11:860–873

    CAS  PubMed  Google Scholar 

  • Yang Q-Q, Zhao D-S, Zhang C-Q, Wu H-Y, Li Q-F, Gu M-H, Sun SS-M, Liu Q-Q (2018) A connection between lysine and serotonin metabolism in rice endosperm. Plant Physiol 176:1965–1980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo M, Sun S, Zou Y, Yin S, Liu Y, Tang S, Gu M, Yang Z, Yan C (2019) Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nat Commun 10:1949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  • Yi M, Nwe KT, Vanavichit A, Chai-arree W, Toojinda T (2009) Marker assisted backcross breeding to improve cooking quality traits in Myanmar rice cultivar Manawthukha. Field Crops Res 113:178–186

    Google Scholar 

  • Ying J-Z, Ma M, Bai C, Huang X-H, Liu J-L, Fan Y-Y, Song X-J (2018) TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant 11:750–753

    CAS  PubMed  Google Scholar 

  • Yu H, Xie W, Li J, Zhou F, Zhang Q (2014) A whole-genome SNP array (RICE 6 K) for genomic breeding in rice. Plant Biotechnol J 12:28–37

    CAS  PubMed  Google Scholar 

  • Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G (2017) Rational design of high-yield and superior-quality rice. Nature Plants 3:17031

    PubMed  Google Scholar 

  • Zhang L, Ren Y, Lu B, Yang C, Feng Z, Liu Z, Chen J, Ma W, Wang Y, Yu X (2015) FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral ENDOSPERM development in rice. J Exp Bot 67:633–647

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S (2019) Wxlv, the ancestral allele of rice waxy gene. Mol Plant 12:1157–1166

    CAS  PubMed  Google Scholar 

  • Zhao D-S, Li Q-F, Zhang C-Q, Zhang C, Yang Q-Q, Pan L-X, Ren X-Y, Lu J, Gu M-H, Liu Q-Q (2018) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9:1240

    PubMed  PubMed Central  Google Scholar 

  • Zhou H, Wang L, Liu G, Meng X, Jing Y, Shu X, Kong X, Sun J, Yu H, Smith SM (2016a) Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci U S A 113:12844–12849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Wang L, Liu G, Meng X, Jing Y, Shu X, Kong X, Sun J, Yu H, Smith SMJPotNAoS (2016b) Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase waxy in synthesizing resistant starch in rice. Proc Natl Acadf Sci 113:12844–12849

    CAS  Google Scholar 

  • Zhou H, Li P, Xie W, Hussain S, Li Y, Xia D, Zhao H, Sun S, Chen J, Ye H (2017) Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice. Mol Plant 10:634–644

    CAS  PubMed  Google Scholar 

  • Zhou H, Yun P, He Y (2019) Rice appearance quality. In: Bao J (ed) Rice: chemistry and technology. Elsevier & AACCI, pp 371–383

  • Zhu Q, Yu S, Zeng D, Liu H, Wang H, Yang Z, Xie X, Shen R, Tan J, Li H (2017) Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant 10:918–929

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Program on R&D of Transgenic Plants (2016ZX08009003-004) and earmarked fund for Agriculture Research System (CARS-01-03) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing He.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rice Functional Genomics.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Xia, D. & He, Y. Rice grain quality—traditional traits for high quality rice and health-plus substances. Mol Breeding 40, 1 (2020). https://doi.org/10.1007/s11032-019-1080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1080-6

Keywords

Navigation