Skip to main content
Log in

Isolation and characterization of TaQsd1 genes for period of dormancy in common wheat (Triticum aestivum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Pre-harvest sprouting (PHS) can result in obvious reduction of wheat grain yield and quality. Based on the sequence of barley Qsd1 gene, three homologs in common wheat were isolated, designated TaQsd1-5A, TaQsd1-5B, and TaQsd1-5D, respectively. Two CAPS (QSD1 and QSD3) and one KASP (QSD2) markers for TaQsd1-5B were developed and validated both in a natural population consisting of 351 wheat varieties and one RIL population from the cross of Yangxiaomai × Zhongyou 9507. The marker QSD1 co-segregated with a major QTL for the period of dormancy (PD) in the RIL population. The transcript levels of TaQsd1-5B were significantly higher in long-dormancy varieties (lines) than in short-dormancy varieties (lines) during seed imbibition, which is consistent with the activity of the AlaAT enzyme encoded by TaQsd1-5B. Meanwhile, we also found higher expression levels of ABA biosynthesis and signaling genes and higher endogenous ABA contents, but lower expression levels of genes for ABA catabolism in long-dormancy varieties. The allele TaQsd1-5Ba associated with longer PD was more frequently present in Chinese landrace wheats, compared with Chinese modern cultivars and foreign germplasms. These findings provide important insight into understanding the regulatory mechanism of TaQsd1 with respect to PD and molecular markers for improvement of PHS resistance in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashikawa I, Abe F, Nakamura S (2010) Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Sci 179:536–542

    CAS  PubMed  Google Scholar 

  • Bai B, Novák O, Ljung K, Hanson J, Bentsink L (2018) Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. New Phytol 217:1077–1085

    CAS  PubMed  Google Scholar 

  • Benech-Arnold RL, Gualano N, Leymarie J, Côme D, Corbineau F (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot 57:1423–1430

    CAS  PubMed  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci U S A 103:17042–17047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown LK, Wiersma AT, Olson EL (2018) Pre-harvest sprouting and α-amylase activity in soft winter wheat. J Cereal Sci 79:311–318

    CAS  Google Scholar 

  • Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46:805–822

    CAS  PubMed  Google Scholar 

  • Calvo AP, Nicolás C, Lorenzo O, Nicolás G, Rodríguez D (2004) Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J Plant Growth Regul 23:44–53

    CAS  Google Scholar 

  • Chai MF, Zhou C, Molina I, Fu CX, Nakashima J, Li GF, Zhang WZ, Park JJ, Tang YH, Jiang QZ, Wang ZY (2016) A class II KNOX gene, KNOX4, controls seed physical dormancy. Proc Natl Acad Sci U S A 113:6997–7002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Feng JM, Si HQ, Yin B, Zhang HP, Ma CX (2010a) Validating a novel allele of viviparous-1 (Vp-1Bf) associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi. Mol Breed 25:517–525

    CAS  Google Scholar 

  • Chang C, Zhang HP, Feng JM, Yin B, Si HQ, Ma CX (2010b) Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Mol Breed 25:481–490

    Google Scholar 

  • Chen CX, Cai SB, Bai GH (2008) A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed 25:351–358

    Google Scholar 

  • Chen L, Liao B, Qi H, Xie LJ, Huang L, Tan WJ, Zhai N, Yuan LB, Zhou Y, Yu LJ, Chen QF, Shu WS, Xiao S (2015) Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana. Autophagy 11:2233–2246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiwocha SD, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross AR, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48

    CAS  PubMed  Google Scholar 

  • Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donohue K, Heschel MS, Chiang GCK, Butler CM, Barua D (2007) Phytochrome mediates germination responses to multiple seasonal cues. Plant Cell Environ 30:202–212

    PubMed  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    CAS  PubMed  Google Scholar 

  • Flintham JE (2000) Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci Res 10:43–50

    Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gale MD, Flintham JE, Devos KM (2002) Cereal comparative genetics and pre-harvest sprouting. Euphytica 126:21–25

    CAS  Google Scholar 

  • Gao W, Clancy JA, Han F, Prada D, Kleinhofs A, Ullrich SE (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor Appl Genet 107:552–559

    CAS  PubMed  Google Scholar 

  • Gerjets T, Scholefield D, Foulkes MJ, Lenton JR, Holdsworth MJ (2010) An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses. J Exp Bot 61:597–607

    CAS  PubMed  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graeber K, Linkies A, Müller K, Wunchova A, Rott A, Leubner-Metzger G (2010) Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol Biol 73:67–87

    CAS  PubMed  Google Scholar 

  • Gu XY, Liu TL, Feng JH, Suttle JC, Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73:97–104

    CAS  PubMed  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    CAS  PubMed  Google Scholar 

  • Han F, Ullrich SE, Clancy JA, Jitkov V, Kilian A, Romagosa I (1996) Verification of barley seed dormancy loci via linked molecular markers. Theor Appl Genet 92:87–91

    CAS  PubMed  Google Scholar 

  • Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Macháčková I, Fischer U, Leubner-Metzger G (2007) 1-aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58:3047–3060

    CAS  PubMed  Google Scholar 

  • Hickey LT, Dieters MJ, DeLacy IH, Kravchuk OY, Mares DJ, Banks PM (2009) Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L.) grown under controlled environmental conditions. Euphytica 168:303–310

    CAS  Google Scholar 

  • Himi E, Mares DJ, Yanagisawa A, Noda K (2002) Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot 53:1569–1574

    CAS  PubMed  Google Scholar 

  • Hori K, Sato K, Takeda K (2007) Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm. Theor Appl Genet 115:869–876

    PubMed  Google Scholar 

  • Ishige F, Takaichi M, Foster R, Chua N, Oeda K (1999) A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J 18:443–448

    CAS  Google Scholar 

  • Izydorczyk C, Nguyena TN, Jo S, Son S, Tuan PA, Ayele BT (2017) Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signaling mediates the effect of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L). Plant Cell Environ 41:1022–1037

    PubMed  Google Scholar 

  • Jacobsen JV, Barrero JM, Hughes T, Julkowska M, Taylor JM, Xu Q, Gubler F (2013) Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta 238:121–138

    CAS  PubMed  Google Scholar 

  • Jiang H, Zhao LX, Chen XJ, Cao JJ, Wu ZY, Liu K, Zhang C, Wei WX, Xie HY, Li L, Gan YG, Lu J, Chang C, Zhang HP, Xia XC, Xiao SH, Ma CX (2018) A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat. Mol Breed 38:69–83

    Google Scholar 

  • Kim SR, Choi JL, Costa MA, An G (1992) Identification of G-box sequence as an essential element for methyl jasmonate response of potato proteinase inhibitor II promoter. Plant Physiol 99:627–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG (2012) A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63:1013–1024

    CAS  PubMed  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laethauwer SD, Reheul D, Riek JD, Haesaert G (2012) Vp1 expression profiles during kernel development in six genotypes of wheat, triticale and rye. Euphytica 188:61–70

    Google Scholar 

  • Lei L, Zhu XK, Wang SW, Zhu MR, Carver BF, Yan LL (2013) TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS One 8:e73330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenoir C, Corbinean F, Côme D (1986) Barley (Hordeum vulgare) seed dormancy as related to glumella characteristics. Physiol Plant 68:301–307

    CAS  Google Scholar 

  • Leymarie J, Robayo-Romero ME, Gendreau E, Benech-Arnold RL, Corbineau F (2008) Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds. Plant Cell Physiol 49:1830–1838

    CAS  PubMed  Google Scholar 

  • Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics 4:84–93

    CAS  PubMed  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    PubMed  PubMed Central  Google Scholar 

  • Lin M, Cai SB, Wang S, Liu SB, Zhang GR, Bai GH (2015) Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395

    CAS  PubMed  Google Scholar 

  • Lin M, Zhang DD, Liu SB, Zhang GR, Yu JM, Fritz AK, Bai GH (2016) Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics 17:794–810

    PubMed  PubMed Central  Google Scholar 

  • Linkies A, Müller K, Morris K, Tureckovac V, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YH, Xu S, Ling TF, Xu LL, Shen WB (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167:1371–1379

    CAS  PubMed  Google Scholar 

  • Liu SB, Sehgal SK, Li JR, Lin M, Trick HN, Yu JM, Gill BS, Bai GH (2013a) Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat. Genetics 195:263–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XD, Zhang H, Zhao Y, Feng ZY, Li Q, Yang HQ, Luan S, Li JM, He ZH (2013b) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci U S A 110:15485–15490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SB, Sehgal SK, Lin M, Li J, Trick H, Gill BS, Bai GH (2015) Independent mis-splicing mutations in TaPHS1 causing loss of pre-harvest sprouting (PHS) resistance during wheat domestication. New Phytol 208:928–935

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−△△Ct) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mares D, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364

    CAS  PubMed  Google Scholar 

  • Matilla AJ (2000) Ethylene in seed formation and germination. Seed Sci Res 10:111–126

    CAS  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905

    CAS  PubMed  Google Scholar 

  • McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci U S A 99:10203–10208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menkens AE, Schindler U, Cashmore AR (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20:506–510

    CAS  PubMed  Google Scholar 

  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954

    CAS  PubMed  Google Scholar 

  • Morris CF, Moffatt JM, Sears RG, Paulsen GM (1989) Seed dormancy and responses of caryopses, embryos, and calli to abscisic acid in wheat. Plant Physiol 90:643–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    PubMed  Google Scholar 

  • Nagao RT, Goekjian VH, Hong JC, Key JL (1993) Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Mol Biol 21:1147–1162

    CAS  PubMed  Google Scholar 

  • Nakamura S, Toyama T (2001) Isolation of a VP1 homologue from wheat and analysis of its expression in embryos of dormant and non-dormant cultivars. J Exp Bot 52:875–876

    CAS  PubMed  Google Scholar 

  • Nakamura S, Komatsuda T, Miura H (2007) Mapping diploid wheat homologues of Arabidopsis seed ABA signaling genes and QTLs for seed dormancy. Theor Appl Genet 114:1129–1139

    CAS  PubMed  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Pourkheirandish M, Morishige H, Kubo Y, Nakamura M, Ichimura K, Seo S, Kanamori H, Wu JZ, Ando T, Hensel G, Sameri M, Stein N, Sato K, Matsumoto T, Yano M, Komatsuda T (2016) Mitogen-activated protein kinase kinase 3 regulates seed dormancy in barley. Curr Biol 26:775–781

    CAS  PubMed  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67

    CAS  Google Scholar 

  • Noda K, Matsuura T, Maekawa M, Taketa S (2002) Chromosomes responsible for sensitivity of embryo to abscisic acid and dormancy in wheat. Euphytica 123:203–209

    CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung W, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    CAS  PubMed  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode ABA 8′-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onishi K, Yamane M, Yamaji N, Tokui M, Kanamori H, Wu JZ, Komatsuda T, Sato K (2017) Sequence differences in the seed dormancy gene Qsd1 among various wheat genomes. BMC Genomics 18:497–506

    PubMed  PubMed Central  Google Scholar 

  • Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Mapping QTLs for seed dormancy and Vp1 homologue on chromosome 3A of wheat. Theor Appl Genet 106:1491–1496

    CAS  PubMed  Google Scholar 

  • Pearson K (1896) Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia. Philos Trans R Soc A 187:253–318

    Google Scholar 

  • Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006

    CAS  PubMed  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prada D, Ullrich SE, Molina-Cano JL, Cistué L, Clancy JA, Romagosa I (2004) Genetic control of dormancy in a triumph/Morex cross in barley. Theor Appl Genet 109:62–70

    CAS  PubMed  Google Scholar 

  • Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800

    CAS  PubMed  Google Scholar 

  • Rasheed A, Wen W, Gao FM, Zhai SN, Jin H, Liu JD, Guo Q, Zhang YJ, Dreisigacker S, Xia XC, He ZH (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860

    CAS  PubMed  Google Scholar 

  • Rasul G, Humphreys DG, Brûlé-Babel A, Mccartney CA, Knox RE, Depauw RM, Somers DJ (2009) Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica 168:363–378

    CAS  Google Scholar 

  • Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG, Fincher GB, Matsumoto T, Takeda K, Komatsuda T (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625–11634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schramm EC, Nelson SK, Kidwell KK, Steber CM (2013) Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’. Theor Appl Genet 126:791–803

    CAS  PubMed  Google Scholar 

  • Sessa G, Meller Y, Fluhr R (1995) A GCC element and a G-box motif participate in ethylene-induced expression of the PRB-lb gene. Plant Mol Biol 28:145–153

    CAS  PubMed  Google Scholar 

  • Shao MQ, Bai GH, Rife TW, Poland J, Lin M, Liu SB, Chen H, Kumssa T, Fritz A, Trick H, Li Y, Zhang GR (2018) QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby. Theor Appl Genet 131:1683–1697

    PubMed  Google Scholar 

  • Shen QX, Ho TD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a nove1 cis-acting element. Plant Cell 7:295–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shorinola O, Balcárková B, Hyles J, Tibbits J, Hayden MJ, Holušova K, Valárik M, Distelfeld A, Torada A, Barrero JM, Uauy C (2017) Haplotype analysis of the pre-harvest sprouting resistance locus Phs-A1 reveals a causal role of TaMKK3-A in global germplasm. Front Plant Sci 8:1555–1568

    PubMed  PubMed Central  Google Scholar 

  • Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu CY, Feng YQ, Cao XF, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet 9:e1003577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son S, Chitnis VR, Liu A, Gao F, Nguyen TN, Ayele BT (2016) Abscisic acid metabolic genes of wheat (Triticum aestivum L.): identification and functionality in seed dormancy and dehydration tolerance. Planta 244:429–447

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama N, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci U S A 107:5792–5797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y (1990) Intea- and inter-specific variation of dormancy in the seeds of Tyiticum and Aegilops. Environ Control Biol 28:13–20

    Google Scholar 

  • Teng S, Rognoni S, Bentsink L, Smeekens S (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signaling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381

    CAS  PubMed  Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J 23:363–374

    CAS  PubMed  Google Scholar 

  • Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu J, Matsumoto T, Kawaura K, Ogihara Y (2016) A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Curr Biol 26:782–787

    CAS  PubMed  Google Scholar 

  • Walker-Simmons MK (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6:494–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YP, Li L, Ye TT, Zhao SJ, Liu Z, Feng YQ, Wu Y (2011) Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J 68:249–261

    CAS  PubMed  Google Scholar 

  • Xi WY, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination and fertility relevant to the brassinosteroid signaling pathway. Plant Signal Behav 5:1315–1317

    PubMed  PubMed Central  Google Scholar 

  • Xia LQ, Ganal MW, Shewry PR, He ZH, Yang Y, Röder MS (2008) Exploiting the diversity of Viviparous-1 gene associated with pre-harvest sprouting tolerance in European wheat varieties. Euphytica 159:411–417

    CAS  Google Scholar 

  • Xiao SH, Zhang XY, Yan CS, Lin H (2002) Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: an overview of the current strategy. Euphytica 126:35–38

    CAS  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhao XL, Xia LQ, Chen XM, Xia XC, Yu Z, He ZH, Rŏder M (2007) Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheat. Theor Appl Genet 115:971–980

    CAS  PubMed  Google Scholar 

  • Yang Y, Chen XM, He ZH, Röder M, Xia LQ (2009) Distribution of Vp-1 alleles in Chinese white-grained landraces, historical and current wheat cultivars. Cereal Res Commun 37:169–177

    Google Scholar 

  • Yang Y, Zhang CL, Liu SX, Sun YQ, Meng JY, Xia LQ (2014) Characterization of the rich haplotypes of Viviparous-1A in Chinese wheats and development of a novel sequence-tagged site marker for pre-harvest sprouting resistance. Mol Breed 33:75–88

    Google Scholar 

  • Zhang HP, Chang C, You GX, Zhang XY, Yan CS, Xiao SH, Si HQ, Lu J, Ma CX (2010) Identification of molecular markers associated with seed dormancy in micro-core collections of Chinese wheat and landraces. Acta Agron Sin 36:1649–1656 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhang YJ, Miao XL, Xia XC, He ZH (2014) Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor Appl Genet 127:855–866

    CAS  PubMed  Google Scholar 

  • Zhang YJ, Xia XC, He ZH (2017) The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theor Appl Genet 130:81–89

    PubMed  Google Scholar 

  • Zhang N, McHale LK, Finer JJ (2019) Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters. Plant Biotechnol J 17:724–735

    CAS  PubMed  Google Scholar 

  • Zhu YL, Wang SX, Zhao LX, Zhang DX, Hu JB, Yang YJ, Chang C, Ma CX, Zhang HP (2014) Exploring molecular markers of pre-harvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agron Sin 40:1725–1732 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhu YL, Wang SX, Zhang HP, Zhao LX, Wu ZY, Jiang H, Cao JJ, Liu K, Qin M, Lu J, Sun GL, Xia XC, Chang C, Ma CX (2016) Identification of major loci for seed dormancy at different post-ripening stages after harvest and validation of a novel locus on chromosome 2AL in common wheat. Mol Breed 36:174–186

    Google Scholar 

Download references

Author contribution statement

HPZ and CC initiated the project, and designed the experiment; WXW, XYM, and HJ conducted TaQsd1 isolation and allelic analysis, as well as gene-specific markers development and validation. WXW and HPZ prepared the manuscript; JJC and LL performed association and linkage mapping analysis; SYS, JFW, SXW, and YLZ performed phenotype tests and analysis; JL and HQS assisted in assaying all the GI and FS phenotypes; XCX and CXM revised this paper; all authors provided comments and revisions of the manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (31871608), the National key research and development plan “Breeding new wheat varieties with high-yielding, high-quality and water-saving in the south of Huang-Huai River winter wheat area” - the breeding of new wheat germplasm and varieties with resistance to adversity (2017YFD0100703), the China Agriculture Research System (CARS-03), the National Key Research and Development Program of China (2016YFD0101802, 2017YFD0100804), Wheat Genetics and Breeding Research Platform Innovation Team of Anhui’s University (2015-), Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), and the Agriculture Research System of Anhui province (AHCYTX-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiping Zhang or Cheng Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The experiments conducted in this study comply with the current laws of China.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Min, X., Shan, S. et al. Isolation and characterization of TaQsd1 genes for period of dormancy in common wheat (Triticum aestivum L.). Mol Breeding 39, 150 (2019). https://doi.org/10.1007/s11032-019-1060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1060-x

Keywords

Navigation