Skip to main content
Log in

Towards a deeper integrated multi-omics approach in the root system to develop climate-resilient rice

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Roots are the only organ system to uptake water and nutrients from the soil. The root system is crucial for plants to survive and adapt to environmental stresses. Therefore, the root system architecture (RSA) is an important breeding target for developing climate-resilient rice. Since the rice genome has been completely sequenced, many genes for root development have been cloned and characterized. In addition, with the advances in technologies related to omics analysis, such as high-throughput sequencing, transcriptome analysis of roots has also progressed. In contrast, high-throughput root phenotyping has not been established not only in rice but also in whole plants because roots are hidden underground. This deficiency represents a bottleneck for utilizing an integrated multi-omics approach for molecular breeding of RSA. We first summarized previous transcriptome analyses for root development under various abiotic stresses such as drought, salinity, and heat, and assessed the current status of root phenotyping technology and modeling in rice. This knowledge allowed us to contemplate the possibility of applying an integrated multi-omics dataset from RSA to molecular breeding of climate-resilient rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe J, Morita S (1994) Growth direction of nodal roots in rice: its variation and contribution to root system formation. Plant Soil 165:333–337

    Article  CAS  Google Scholar 

  • Alahmad S, El Hassouni K, Bassi FM, Dinglasan E, Youssef C, Quarry G, Aksoy A, Mazzucotelli E, Juhász A, Able JA, Christopher J, Voss-Fels KP, Hickey LT (2019) A major root architecture QTL responding to water limitation in durum wheat. Front Plant Sci 10:436

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho YS, Schmöckel SM, Tester M, Negrão S (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun 7:13342

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrew SPS (1987) A mathematical model of root exploration and of grain fill with particular reference to winter wheat. Fertil Res 11:267–281

    Article  Google Scholar 

  • Arai-Sanoh Y, Takai T, Yoshinaga S, Nakano H, Kojima M, Sakakibara H, Kondo M, Uga Y (2014) Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields. Sci Rep 4:5563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asseng S, Richter C, Wessolek G (1997) Modelling root growth of wheat as the linkage between crop and soil. Plant Soil 190:267–277

    Article  CAS  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson JA, Lobet G, Noll M, Meyer PE, Griffiths M, Wells DM (2017) Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies. Gigascience 6:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson JA, Pound MP, Bennett MJ, Wells DM (2019) Uncovering the hidden half of plants using new advances in root phenotyping. Curr Opin Biotechnol 55:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A (2016) Comparative leaf and root transcriptomic analysis of two rice japonica cultivars reveals major differences in the root early response to osmotic stress. Rice 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Borg H, Grimes DW (1986) Depth development of roots with time: an empirical description. Trans ASAE 29:194–197

    Article  Google Scholar 

  • Bradski G (2000) The OpenCV library. Dr. Dobb’s. J Software Tools 120:122–125

    Google Scholar 

  • Brinke A, Reifferscheid G, Klein R, Feiler U, Buchinger S (2018) Transcriptional changes measured in rice roots after exposure to arsenite-contaminated sediments. Environ Sci Pollut Res Int 25:2707–2717

    Article  CAS  PubMed  Google Scholar 

  • Burridge J, Jochua CN, Bucksch A, Lynch JP (2016) Legume shovelomics: high-throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crop Res 192:21–32

    Article  Google Scholar 

  • Cai H, Lu Y, Xie W, Zhu T, Lian X (2012a) Transcriptome response to nitrogen starvation in rice. J Biosci 37:731–747

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Xie W, Zhu T, Lian X (2012b) Transcriptome response to phosphorus starvation in rice. Acta Physiol Plant 34:327–341

    Article  CAS  Google Scholar 

  • Cai J, Zeng Z, Connor JN, Huang CY, Melino V, Kumar P, Miklavcic SJ (2015) RootGraph: a graphic optimization tool for automated image analysis of plant roots. J Exp Bot 66:6551–6662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  CAS  PubMed  Google Scholar 

  • Chapman SC, Hammer GL, Meinke H (1993) A sunflower simulation model: I. Model development. Agron J 85:725–735

    Article  Google Scholar 

  • Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8:263–269

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Cheng Y, Han S, Van Handel B, Dong L, Li X, Xie X (2017a) Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar - sea rice 86. BMC Genomics 18:655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Ding Q, Błaszkiewicz Z, Sun J, Sun Q, He R, Li Y (2017b) Phenotyping for the dynamics of field wheat root system architecture. Sci Rep 7:37649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotsaftis O, Plett D, Johnson AA, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U (2011) Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol Plant 4:25–41

    Article  CAS  PubMed  Google Scholar 

  • Courtois B, Audebert A, Dardou A, Roques S, Ghneim-Herrera T, Droc G, Frouin J, Rouan L, Gozé E, Kilian A, Ahmadi N, Dingkuhn M (2013) Genome-wide association mapping of root traits in a japonica rice panel. PLoS One 8:e78037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly KR, Keyes SD, Masum S, Roose T (2016) Image-based modelling of nutrient movement in and around the rhizosphere. J Exp Bot 67:1059–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA (2015) Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant Cell Environ 38:1213–1232

    Article  CAS  PubMed  Google Scholar 

  • Drouet JL, Pagès L (2007) GRAAL-CN: a model of growth, architecture and allocation for carbon and nitrogen dynamics within whole plants formalised at the organ level. Ecol Model 206:231–249

    Article  CAS  Google Scholar 

  • Dubey S, Misra P, Dwivedi S, Chatterjee S, Bag SK, Mantri S, Asif MH, Rai A, Kumar S, Shri M, Tripathi P, Tripathi RD, Trivedi PK, Chakrabarty D, Tuli R (2010) Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress. BMC Genomics 11:648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Trivedi PK, Tripathi RD, Chakrabarty D (2014) Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Funct Integr Genomics 14:401–417

    Article  CAS  PubMed  Google Scholar 

  • Dupuy L, Vignes M, Mckenzie BM, White PJ (2010) The dynamics of root meristem distribution in the soil. Plant Cell Environ 33:358–369

    Article  CAS  PubMed  Google Scholar 

  • Dusserre J, Audebert A, Radanielson A, Chopart JL (2009) Towards a simple generic model for upland rice root length density estimation from root intersections on soil profile. Plant Soil 325:277

    Article  CAS  Google Scholar 

  • Faget M, Nagel KA, Walter A, Herrera JM, Jahnke S, Schurr U, Temperton VM (2013) Root–root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Ann Bot 112:253–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Clark RT, Zheng Y, Iyer-Pascuzzi AS, Weitz JS, Kochian LV, Edelsbrunner H, Liao H, Benfey PN (2013) Genotypic recognition and spatial responses by rice roots. Proc Natl Acad Sci U S A 110:2670–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Flavel RJ, Guppy CN, Rabbi SM, Young IM (2017) An image processing and analysis tool for identifying and analysing complex plant root systems in 3D soil using non-destructive analysis: Root1. PLoS One 12:e0176433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fontanili L, Lancilli C, Suzui N, Dendena B, Yin Y-G, Ferri A, Ishii S, Kawachi N, Lucchini G, Fujimaki S, Sacchi GA, Nocito F (2016) Kinetic analysis of zinc/cadmium reciprocal competitions suggests a possible Zn-insensitive pathway for root-to-shoot cadmium translocation in rice. Rice 9:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S, Morosinotto T, Zottini M, Lo Schiavo F (2018) Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  • French A, Ubeda-Tomás S, Holman TJ, Bennett MJ, Pridmore T (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S (2010) Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152:1796–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galkovskyi T, Mileyko Y, Bucksch A, Moore B, Symonova O, Price CA, Topp CN, Iyer-Pascuzzi AS, Zurek PR, Fang S, Harer J, Benfey PN, Weitz JS (2012) GiA Roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biol 12:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84

    Article  CAS  PubMed  Google Scholar 

  • Gerwitz A, Page ER (1974) An empirical mathematical model to describe plant root systems. J Appl Ecol 11:773–781

    Article  Google Scholar 

  • Gho YS, An G, Park HM, Jung KH (2018) A systemic view of phosphate starvation-responsive genes in rice roots to enhance phosphate use efficiency in rice. Plant Biotechnol Rep 12:249–264

    Article  Google Scholar 

  • Giri J, Bhosale R, Huang G, Pandey BK, Parker H, Zappala S, Yang J, Dievart A, Bureau C, Ljung K (2018) Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nat Commun 9:1408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gowda VR, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122:1–13

    Article  Google Scholar 

  • Großkinsky DK, Syaifullah SJ, Roitsch T (2018) Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants. J Exp Bot 69:825–844

    Article  PubMed  CAS  Google Scholar 

  • Groot JJR (1987) Simulation of nitrogen balance in a system of winter wheat and soil. In: Simulation Report CABO-TT, 13th edn. Centre for Agrobiological Research, Wageningen

    Google Scholar 

  • Guo L, Chen J, Cui X, Fan B, Lin H (2013) Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil 362:1–23

    Article  CAS  Google Scholar 

  • He Y, Liao H, Yan X (2003) Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures. Plant Soil 248:247–256

    Article  CAS  Google Scholar 

  • He F, Liu Q, Zheng L, Cui Y, Shen Z, Zheng L (2015) RNA-seq analysis of rice roots reveals the involvement of post-transcriptional regulation in response to cadmium stress. Front Plant Sci 6:1136

    PubMed  PubMed Central  Google Scholar 

  • Heeraman DA, Hopmans JW, Clausnitzer V (1997) Three dimensional imaging of plant roots in situ with X-ray computed tomography. Plant Soil 189:167–179

    CAS  Google Scholar 

  • Hidaka K, Miyoshi Y, Ishii S, Suzui N, Yin Y-G, Kurita K, Nagao K, Araki T, Yasutake D, Kitano M, Kawachi N (2019) Dynamic analysis of photosynthate translocation into strawberry fruits using non-invasive 11C-labeling supported with conventional destructive measurements using 13C-labeling. Front Plant Sci 9:1946

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh PH, Kan CC, Wu HY, Yang HC, Hsieh MH (2018) Early molecular events associated with nitrogen deficiency in rice seedling roots. Sci Rep 8:12207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012a) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  CAS  Google Scholar 

  • Huang TL, Nguyen QT, Fu SF, Lin CY, Chen YC, Huang HJ (2012b) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    Article  CAS  PubMed  Google Scholar 

  • Hubeau M, Mincke J, Vanhove C, Gorel AP, Fayolle A, Epila J, Leroux O, Vandenberghe S, Steppe K (2019) 11C-autoradiographs to image phloem loading. Front For Glob Change 2:20

    Article  Google Scholar 

  • Hubeau M, Steppe K (2015) Plant-PET Scans: in vivo mapping of xylem and phloem functioning. Trends Plant Sci 20:676–685

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting Cd-107 tracer. BMC Plant Biol 11:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail AM, Heuer S, Thomson MJ, Wissuwa M (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol Biol 65:547–570

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Kawahara Y, Tanaka T (2018) Databases for rice omics studies. In: Sasaki T, Ashikari M (eds) Rice Genomics, Genetics and Breeding. Springer Nature, Singapore, pp 541–554

    Chapter  Google Scholar 

  • Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahnke S, Menzel MI, van Dusschoten D, Roeb GW, Buehler J, Minwuyelet S, Bluemler P, Temperton VM, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coenen HH, Schurr U (2009) Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644

    Article  CAS  PubMed  Google Scholar 

  • Janardhan P, Hebert M, Ikeuchi K (1998) The space-time map applied to Drosophila embryogenesis. Proc Workshop Biom Image Anal. 144–153.

  • Jones CA, Kiniry JR (1986) CERES-maize: a simulation model of maize growth and development. Texas A&M University Press, College Station

    Google Scholar 

  • Kano M, Inukai Y, Kitano H, Yamauchi A (2011) Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant Soil 342:117–128

    Article  CAS  Google Scholar 

  • Kawachi N, Kikuchi K, Suzui N, Ishii S, Fujimaki S, Ishioka NS, Watabe H (2011b) Imaging of carbon translocation to fruit using carbon-11-labeled carbon dioxide and positron emission tomography. IEEE Trans Nucl Sci 58:395–399

    Article  CAS  Google Scholar 

  • Kawachi N, Suzui N, Ishii S, Ito S, Ishioka NS, Yamazaki H, Hatano-Iwasaki A, Ogawa K, Fujimaki S (2011a) Real-time whole-plant imaging of 11C translocation using positron-emitting tracer imaging system. Nucl Instrum Methods Phys Res A 648:S317–S320

    Article  CAS  Google Scholar 

  • Kawachi N, Yin Y-G, Suzui N, Ishii S, Yoshihara T, Watabe H, Yamamoto S, Fujimaki S (2016) Imaging of radiocesium uptake dynamics in a plant body using a newly developed high-resolution gamma camera. J Environ Radioact 151:461–467

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk G, Van Du L (1997) Changes in rice root architecture, porosity, and oxygen and proton release under phosphorus deficiency. New Phytol 135:191–200

    Article  CAS  Google Scholar 

  • Kitomi Y, Itoh J, Uga Y (2018a) Genetic mechanisms involved in the formation of root system architecture. In: Sasaki T, Ashikari M (eds) Rice Genomics. Genetics and Breeding. Springer Nature, Singapore, pp 241–274

    Google Scholar 

  • Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y (2015) QTLs underlying natural variation of root growth angle among rice cultivars with functional allele of DEEPER ROOTING 1. Rice 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitomi Y, Ogawa A, Kitano H, Inukai Y (2008) CRE4 regulates crown root formation through auxin transport in rice. Plant Roots 2:19–28

    Article  CAS  Google Scholar 

  • Kitomi Y, Nakao E, Kawai S, Kanno N, Ando T, Fukuoka S, Irie K, Uga Y (2018b) Fine mapping of QUICK ROOTING 1 and 2, quantitative trait loci increasing root length in rice. G3 8:727–735

    Article  CAS  PubMed  Google Scholar 

  • Kiyomiya S, Nakanishi H, Uchida H, Nishiyama S, Tsukada H, Ishioka NS, Watanabe S, Osa A, Mizuniwa C, Ito T, Matsuhashi S, Hashimoto S, Sekine T, Tsuji A, Mori S (2001) Light activates H2 15O flow in rice: detailed monitoring using a positron-emitting tracer imaging system (PETIS). Physiol Plant 113:359–367

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Zhang M, De Smet I, Ding Z (2014) Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol 32:597–598

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Zhong H, Gong Z, Fang X, Sun T, Deng X, Li Y (2019) Meta-analysis of salt stress transcriptome responses in different rice genotypes at the seedling stage. Plants 8:64

    Article  CAS  PubMed Central  Google Scholar 

  • Leitner D, Klepsch S, Bodner G, Schnepf A (2010) A dynamic root system growth model based on L-systems. Plant Soil 332:177–192

    Article  CAS  Google Scholar 

  • Liu X, Dong X, Xue Q, Leskovar DI, Jifon J, Butnor JR, Marek T (2018) Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant Soil 423:517–531

    Article  CAS  Google Scholar 

  • Liu S, Wang J, Wang L, Wang X, Xue Y, Wu P, Shou H (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19:1110–1119

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobet G, Draye X, Périlleux C (2013) An online database for plant image analysis software tools. Plant Methods 9:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobet G, Pagès L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch J (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai CD, Phung NT, To HT, Gonin M, Hoang GT, Nguyen KL, Do VN, Courtois B, Gantet P (2014) Genes controlling root development in rice. Rice 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanyam D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68:2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 62:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Xiang D, Zhu J, Li Y, Mao C (2019) Molecular mechanisms of root development in rice. Rice 12:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Minh-Thu PT, Hwang DJ, Jeon JS, Nahm BH, Kim YK (2013) Transcriptome analysis of leaf and root of rice seedling to acute dehydration. Rice 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci 9:1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanty B, Kitazumi A, Cheung CYM, Lakshmanan M, de Los Reyes BG, Jang IC, Lee DY (2016) Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network. Plant Sci 242:224–239

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Suga T, Nemoto K (1988) Analysis on root system morphology using a root length density model: II. Examples of analysis on rice root systems. Jpn J Crop Sci 57:755–758

    Article  Google Scholar 

  • Moumeni A, Satoh K, Kondoh H, Asano T, Hosaka A, Venuprasad R, Serraj R, Kumar A, Leung H, Kikuchi S (2011) Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biol 11:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller B, Martre P (2019) Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics. J Exp Bot 70:2339–2344

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthurajan R, Rahman H, Manoharan M, Ramanathan V, Nallathambi J (2018) Drought responsive transcriptome profiling in roots of contrasting rice genotypes. Indian J Plant Physiol 23:393–407

    Article  CAS  Google Scholar 

  • Naeem A, French AP, Wells DM, Pridmore TP (2011) High-throughput feature counting and measurement of roots. Bioinformatics 27:1337–1338

    Article  CAS  PubMed  Google Scholar 

  • Nagel KA, Putz A, Gilmer F, Heinz K, Fischbach A, Pfeifer J, Faget M, Blossfeld S, Ernst M, Dimaki C, Kastenholz B, Kleinert AK, Galinski A, Scharr H, Fiorani F, Schurr U (2012) GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons. Funct Plant Biol 39:891–904

    Article  PubMed  Google Scholar 

  • Nakamura S, Suzui N, Nagasaka T, Komatsu F, Ishioka NS, Ito-Tanabata S, Kawachi N, Rai H, Hattori H, Chino M, Fujimaki S (2013) Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J Exp Bot 64:1073–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemoto H, Suga R, Ishihara M, Okutsu Y (1998) Deep rooted rice varieties detected through the observation of root characteristics using the trench method. Breed Sci 48:321–324

    Google Scholar 

  • Obertello M, Shrivastava S, Katari MS, Coruzzi GM (2015) Cross-species network analysis uncovers conserved nitrogen-regulated network modules in rice. Plant Physiol 168:1830–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y (2017) Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants 3:17029

    Article  CAS  PubMed  Google Scholar 

  • O’Leary GJ, Connor DJ, White DH (1985) A simulation model of the development, growth and yield of the wheat crop. Agric Syst 17:1–26

    Article  Google Scholar 

  • O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, Matsumoto T (2014) Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS One 9:e96946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oono Y, Yazawa T, Kanamori H, Sasaki H, Mori S, Handa H, Matsumoto T (2016) Genome-wide transcriptome analysis of cadmium stress in rice. Biomed Res Int 2016:9739505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patil S, Srividhya A, Veeraghattapu R, Deborah DAK, Kadambari GM, Nagireddy R, Siddiq EA, Vemireddy LR (2017) Molecular dissection of a genomic region governing root traits associated with drought tolerance employing a combinatorial approach of QTL mapping and RNA-seq in rice. Plant Mol Biol Report 35:457–468

    Article  CAS  Google Scholar 

  • Pearce G, Moura DS, Stratmann J, Ryan CA Jr (2001) RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci U S A 98:12843–12847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieruschka R, Schurr U (2019) Plant phenotyping: past, present, and future. Plant Phenomics 2019:7507131

    Article  PubMed  PubMed Central  Google Scholar 

  • Piñeros MA, Larson BG, Shaff JE, Schneider DJ, Falcão AX, Yuan L, Clark RT, Craft EJ, Davis TW, Pradier PL, Shaw NM, Assaranurak I, McCouch SR, Sturrock C, Bennett M, Kochian LV (2016) Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants. J Integr Plant Biol 58:230–241

    Article  PubMed  Google Scholar 

  • Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A, Tzimiropoulos G, Wells DM, Murchie EH, Pridmore TP, French AP (2017) Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience 6:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer-Verlag, New York

    Book  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasband WS (1997-2018) ImageJ. U. S. National Institutes of Health, Bethesda https://imagej.nih.gov/ij/

  • Razzaque S, Haque T, Elias SM, Rahman MS, Biswas S, Schwartz S, Ismail AM, Walia H, Juenger TE, Seraj ZI (2017) Reproductive stage physiological and transcriptional responses to salinity stress in reciprocal populations derived from tolerant (Horkuch) and susceptible (IR29) rice. Sci Rep 7:46138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC, Gantet P, Espeout S, Guiderdoni E, Périn C (2009) Molecular genetics of rice root development. Rice 2:15–34

    Article  Google Scholar 

  • Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106:14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson MJ, Fukai S, Hammer GL, Ludlow MM (1993) Modelling root growth of grain sorghum using the CERES approach. Field Crop Res 33:113–130

    Article  Google Scholar 

  • Rogers ED, Monaenkova D, Mijar M, Nori A, Goldman DI, Benfey PN (2016) X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiol 171:2028–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronzan M, Piacentini D, Fattorini L, Della Rovere F, Eiche E, Riemann F, Altamura MM, Falasca G (2018) Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environ Exp Bot 151:64–75

    Article  CAS  Google Scholar 

  • Rowley H, Kanade T (1994) Reconstructing 3D blood vessel shapes from multiple X-ray images. AAAI Workshop Comp Vision Med Image Proc.

  • Sandhu N, Raman KA, Torres RO, Audebert A, Dardou A, Kumar A, Henry A (2016) Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiol 171:2562–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Schnepf A, Leitner D, Landl M, Lobet G, Mai TH, Morandage S, Shang C, Zörner M, Vanderborght J, Vereecken H (2018) CRootBox: a structural–functional modelling framework for root systems. Ann Bot 121:1033–1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebastian J, Yee MC, Goudinho Viana W, Rellán-Álvarez R, Feldman M, Priest HD, Trontin C, Lee T, Jiang H, Baxter I, Mockler TC, Hochholdinger F, Brutnell TP, Dinneny JR (2016) Grasses suppress shoot-borne roots to conserve water during drought. Proc Natl Acad Sci U S A 113:8861–8866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shashidhar HE, Henry A, Hardy B (2012) Methodologies for root drought studies in rice. IRRI, Philippines

    Google Scholar 

  • Shin SY, Jeong JS, Lim JY, Kim T, Park JH, Kim JK, Shin C (2018) Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genomics 19:532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinclair TR, Seligman NAG (1996) Crop modeling: from infancy to maturity. Agron J 88:698–704

    Article  Google Scholar 

  • Sinha SK, Sevanthi VAM, Chaudhary S, Tyagi P, Venkadesan S, Rani M, Mandal PK (2018) Transcriptome analysis of two rice varieties contrasting for nitrogen use efficiency under chronic N starvation reveals differences in chloroplast and starch metabolism-related genes. Genes 9:206

    Article  PubMed Central  CAS  Google Scholar 

  • Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription factor hierarchy defines an environmental stress response network. Science 354:aag1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stapper M (1984) SIMTAG: a simulation model of wheat genotypes. Model documentation. University of New England, Armidale.

  • Suga T, Nemoto K, Abe J, Morita S (1988) Analysis on root system morphology using a root length density model: I. the model. Jps J Crop Sci 57:749–754

    Article  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65:6735–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzui N, Yin Y-G, Ishii S, Sekimoto H, Kawachi N (2017) Visualization of zinc dynamics in intact plants using positron imaging of commercially available 65Zn. Plant Methods 13:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Symonova O, Topp CN, Edelsbrunner H (2015) DynamicRoots: a software platform for the reconstruction and analysis of growing plant roots. PLoS One 10:e0127657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:770–783

    Article  CAS  Google Scholar 

  • Teramoto S, Kitomi Y, Nishijima R, Takayasu S, Maruyama N, Uga Y (2019) Backhoe-assisted monolith method for plant root phenotyping under upland conditions. Breed Sci 69(3):508–513

  • Topp CN, Bray AL, Ellis NA, Liu Z (2016) How can we harness quantitative genetic variation in crop root systems for agricultural improvement? J Integr Plant Biol 58:213–225

    Article  PubMed  Google Scholar 

  • Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee CR, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T, Moore BT, Harer J, Edelsbrunner H, Mitchell-Olds T, Weitz JS, Benfey PN (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci U S A 110:E1695–E1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Article  CAS  Google Scholar 

  • Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK (2009) Fe-52 translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiol 50:48–57

    Article  CAS  PubMed  Google Scholar 

  • Tyagi W, Rai M (2017) Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance. Protoplasma 254:725–736

    Article  CAS  PubMed  Google Scholar 

  • Uga Y (2012) Quantitative measurement of root growth angle by using the basket method. In: Shashidhar HE, Henry A, Hardy B (eds) Methodologies for root drought studies in rice. IRRI, Philippines, pp 22–26

    Google Scholar 

  • Uga Y, Assaranurak I, Kitomi Y, Larson BG, Craft EJ, Shaff JE, McCouch SR, Kochian LV (2018) Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis. BMC Genomics 19:273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uga Y, Ebana K, Abe J, Morita S, Okuno K, Yano M (2009) Variation in root morphology and anatomy among accessions of cultivated rice (Oryza sativa L.) with different genetic backgrounds. Breed Sci 59:87–93

    Article  Google Scholar 

  • Uga Y, Kitomi Y, Ishikawa S, Yano M (2015) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62:2485–2494

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Bühler J, Schurr U, Jahnke S (2016) Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging. Plant Physiol 170:1176–1188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Noordwijk M, Brouwer G, Meijboom F, Oliveira MDRG, Bengough AG (2001) Trench profile techniques and core break methods. In Root Methods. Springer, Berlin, pp 211–233

    Google Scholar 

  • Vartanian N (1981) Some aspects of structural and functional modifications induced by drought in root systems. Plant Soil 63:83–92

    Article  Google Scholar 

  • Wang Q, Mathews AJ, Li K, Wen J, Komarov S, O’Sullivan JA, Tai Y-C (2014) A dedicated high-resolution PET imager for plant sciences. Phys Med Biol 59:5613–5629

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 12:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang WS, Zhao XQ, Li M, Huang LY, Xu JL, Zhang F, Cui YR, Fu BY, Li ZK (2016) Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling. J Exp Bot 67:405–419

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Ding G, Yokawa K, Baluška F, Li QF, Liu Y, Shi W, Liang J, Zhang J (2013) An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Sci Rep 3:1273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki H, Suzui N, Yin Y-G, Kawachi N, Ishii S, Shimada H, Fujimaki S (2015) Live-imaging evaluation of the efficacy of elevated CO2 concentration in a closed cultivation system for the improvement of bioproduction in tomato fruits. Plant Biotechnol 32:31–37

    Article  CAS  Google Scholar 

  • Yang YW, Chen HC, Jen WF, Liu LY, Chang MC (2015a) Comparative transcriptome analysis of shoots and roots of TNG67 and TCN1 rice seedlings under cold stress and following subsequent recovery: insights into metabolic pathways, phytohormones, and transcription factors. PLoS One 10:e0131391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang W, Duan L, Chen G, Xiong L, Liu Q (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16:180–187

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Yoon J, Choi H, Fan Y, Chen R, An G (2015b) Transcriptome analysis of nitrogen-starvation-responsive genes in rice. BMC Plant Biol 15:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yazdanbakhsh N, Fisahn J (2010) Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution. Ann Bot 105:783–791

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin X, Stam P, Kropff MJ, Schapendonk AH (2003) Crop modeling, QTL mapping, and their complementary role in plant breeding. Agron J 95:90–98

    Article  CAS  Google Scholar 

  • Yoo YH, Nalini Chandran AK, Park JC, Gho YS, Lee SW, An G, Jung KH (2017) OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-Seq transcriptome analysis of rice genes in response to water deficiencies. Front Plant Sci 8:580

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Takehisa K, Kojima T, Ohno H, Sasaki K, Nakagawa H (2016) Modeling the effects of N application on growth, yield and plant properties associated with the occurrence of chalky grains of rice. Plant Prod Sci 19:30–42

    Article  CAS  Google Scholar 

  • Yu P, Hochholdinger F, Li C (2019) Plasticity of lateral root branching in maize. Front Plant Sci 10:363

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Jiang H, Wang H, Cui J, Wang J, Hu J, Guo L, Qian Q, Xue D (2017b) Transcriptome analysis of rice seedling roots in response to potassium deficiency. Sci Rep 7:5523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Zhou Y, Zhang M, Luo X, Xie J (2017a) Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon). Biosci Rep 37:BSR20160509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang H, Xu J, Jiang C, Yin Z, Xiong H, Xie J, Wang X, Zhu X, Li Y, Zhao W, Rashid MAR, Li J, Wang W, Fu B, Ye G, Guo Y, Hu Z, Li Z (2018) Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions. PLoS Genet 14:e1007521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J (2016) Transcriptome analysis of salt stress responsiveness in the seedlings of dongxiang wild rice (Oryza rufipogon Griff.). PLoS One 11:e0146242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff of the technical support center of the National Agriculture and Food Research Organization for their field management and experimental support

Funding

This work was financially supported by JST CREST Grant Number JPMJCR17O1, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taiji Kawakatsu or Yusaku Uga.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kanami Yoshino and Yuko Numajiri are co-first authors

This article is part of the Topical Collection on Rice Functional Genomics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshino, K., Numajiri, Y., Teramoto, S. et al. Towards a deeper integrated multi-omics approach in the root system to develop climate-resilient rice. Mol Breeding 39, 165 (2019). https://doi.org/10.1007/s11032-019-1058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1058-4

Keywords

Navigation