Skip to main content
Log in

Genomic prediction of grain yield in contrasting environments for white lupin genetic resources

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Germplasm collections hold several thousands of white lupin (Lupinus albus L.) accessions. Genome-enabled models with good predictive ability for specific environments could provide a cost-efficient means to identify promising genetic resources for breeding programmes. This study provided an unprecedented assessment of genome-enabled predictions for white lupin grain yield, focusing on (i) a world collection of 109 landraces and 8 varieties phenotyped in three European sites with contrasting climate (Mediterranean, subcontinental or oceanic) and sowing time (data set 1); (ii) 78 geographically diversified landrace genotypes and three variety genotypes phenotyped in moisture-favourable and severely drought-prone managed environments (data set 2). The interest of predictions for individual genotypes was justified by large within-landrace variation for yield responses. Ridge regression BLUP (rrBLUP) and Bayesian Lasso (BL) models exploited allele frequencies (estimated from 3 to 4 genotypes per landrace) of 10,782 polymorphic SNPs for data set 1, and allele values of 9937 polymorphic SNPs for data set 2, following ApeKI-based genotyping-by-sequencing characterization. Compared with BL, rrBLUP displayed similar predictive ability for data set 1 and better predictive ability for data set 2. Best-predictive models displayed intra-environment predictive ability for the five test environments in the range 0.47–0.76. Cross-environment predictions between pairs of environments with positive genetic correlation, i.e., autumn-sown subcontinental vs Mediterranean sites, and moisture-favourable vs drought-prone environments, exhibited a predictive ability range of 0.40–0.51 and a predictive accuracy range of 0.48–0.61. Our results support the exploitation of genomic predictions and provide economic justification for the genotyping of germplasm collections of white lupin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessandri A, De Felice M, Zeng N, Mariotti A, Pan Y, Cherchi A et al (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci Rep 4:7211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annicchiarico P (2008) Adaptation of cool-season grain legume species across climatically-contrasting environments of southern Europe. Agron J 100:1647–1654

    Article  Google Scholar 

  • Annicchiarico P (2009) Coping with and exploiting genotype × environment interactions. In: Ceccarelli S, Guimarães EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 519–564

    Google Scholar 

  • Annicchiarico P, Carroni AM (2009) Diversity of white and narrow-leafed lupin genotype adaptive response across south-European environments and implications for selection. Euphytica 166:71–81

    Article  Google Scholar 

  • Annicchiarico P, Harzic N, Carroni AM (2010) Adaptation, diversity and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res 119:114–124

    Article  Google Scholar 

  • Annicchiarico P, Harzic N, Huyghe C, Carroni AM (2011) Ecological classification of white lupin landrace genetic resources. Euphytica 180:17–25

    Article  Google Scholar 

  • Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genomics 16:1020

  • Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Ferrari B, Wei Y, et al. (2017a) GBS-based genomic selection for pea grain yield under severe terminal drought. Plant Genome 10:2

  • Annicchiarico P, Nazzicari N, Wei Y, Pecetti L, Brummer EC (2017b) Genotyping-by-sequencing and its exploitation for forage and cool-season grain legume breeding. Front Plant Sci 8:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Annicchiarico P, Romani M, Pecetti L (2018) White lupin variation for adaptation to severe drought stress. Plant Breed 137:782–789

    Article  CAS  Google Scholar 

  • Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Russi L (2019) Pea genomic selection for Italian environments. BMC Genomics 20:603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnoldi A, Boschin G, Zanoni C, Lammi C (2015) The health benefits of sweet lupin seed flours and isolated proteins. J Funct Foods 18:550–563

    Article  CAS  Google Scholar 

  • Atkins CA, Smith PMC, Gupta S, Jones MGK, Caligari PDS (1998) Genetics, cytology and biotechnology. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UK, pp 67–92

    Google Scholar 

  • Atnaf M, Yao N, Martina K, Dagne K, Wegary D, Tesfaye K (2017) Molecular genetic diversity and population structure of Ethiopian white lupin landraces: implications for breeding and conservation. PLoS One 12:e0188696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  CAS  PubMed  Google Scholar 

  • Boschin G, D’Agostina A, Annicchiarico P, Arnoldi A (2007) The fatty acid composition of the oil from Lupinus albus cv. Luxe as affected by environmental and agricultural factors. Eur Food Res Technol 225:769–776

    Article  CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brown AHD (2000) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush SB (ed) Genes in the field. On-farm conservation of crop diversity. IPGRI/IDRC/Lewis Publishers, Boca Raton, FL, pp 19–48

    Google Scholar 

  • Buirchell BJ, Cowling WA (1998) Genetic resources in lupins. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UK, pp 41–66

  • Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert J-B, Siol M, Jacquin F et al. (2015) Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics 16:105

  • Casella G, George EI (1992) Explaining the Gibbs sampler. Am Stat 46:167–174

    Google Scholar 

  • Chong Z, Ruan J, Wu CI (2012) Rainbow: an integrated tool for efficient clustering and assembling RAD-seq reads. Bioinformatics 28:2732–2737

    Article  CAS  PubMed  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLacy IH, Basford KE, Cooper M, Bull IK, McLaren CG (1996) Analysis of multi-environment trials – an historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, UK, pp 39–124

  • Duhnen A, Gras A, Teyssèdre S, Romestant M, Claustres B, Daydé J, et al. (2017) Genomic selection for yield and seed protein content in soybean: a study of breeding program data and assessment of prediction accuracy. Crop Sci 57:1325–1337

    Article  CAS  Google Scholar 

  • Elbasyoni IS, Lorenz AJ, Guttieri M, Frels K, Baenziger PS, Poland J, et al. (2018) A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci 270:123–130

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladstones JS (1998) Distribution, origin, taxonomy, history and importance. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CAB International, Wallingford, UK, pp 1–39

    Google Scholar 

  • Gresta F, Wink M, Prins U, Abberton M, Capraro J, Scarafoni A, et al. (2017) Lupins in European cropping systems. In: Murphy-Bokern D, Stoddard FL, Watson CA (eds) Legumes in cropping systems. CAB International, Wallingford, UK, pp 88–108

    Chapter  Google Scholar 

  • Guo Z, Tucker DM, Basten CJ, Gandhi H, Ersoz E, Guo B et al. (2014) The impact of population structure on genomic prediction in stratified populations. Theor Appl Genet 127:749–762

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):12

    Article  CAS  Google Scholar 

  • Huyghe C (1997) White lupin (Lupinus albus L.). Field Crops Res 53:147–160

    Article  Google Scholar 

  • Huyghe C, Papineau J (1990) Winter development of autumn-sown white lupin: agronomic and breeding consequences. Agronomie 10:709–716

    Article  Google Scholar 

  • Huyghe C, Julier B, Harzic N, Papineau J (1994) Yield and yield components of indeterminate autumn-sown white lupin (Lupinus albus) cv. Lunoble. Eur J Agron 3:145–152

    Article  Google Scholar 

  • Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, et al. (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15:740

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarquín D, Specht J, Lorenz A (2016) Prospects of genomic prediction in the USDA soybean germplasm collection: historical data creates robust models for enhancing selection of accessions. G3 (Bethesda) 6:2329–2341

    Article  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Książkiewicz M, Nazzicari N, Yang H, Nelson N, Renshaw D, Rychel S et al (2017) A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep 7:15335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Wei Y, Acharya A, Hansen JL, Crawford JL, Viands et al. (2015) Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8:2

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Ma Y, Reif JC, Jiang Y, Wen Z, Wang D, Liu Z et al. (2016) Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.). Mol Breed 36:113

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mousavi-Derazmahalleh M, Bayer PE, Nevado B, Hurgobin B, Filatov D, Kilian A et al. (2018) Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theor Appl Genet 131:887–901

  • Nazzicari N, Biscarini F (2017) GROAN: genomic regression workbench (version 1.0.0). https://cran.r-project.org/package=GROAN. Accessed 30 April 2019

  • Nazzicari N, Biscarini F, Cozzi P, Brummer EC, Annicchiarico P (2016) Marker imputation efficiency for genotyping-by-sequencing data in rice (Oryza sativa) and alfalfa (Medicago sativa). Mol Breed 36:69

    Article  CAS  Google Scholar 

  • Nizam Uddin M, Ellison FW, O’Brien L, Latter BDH (1994) The performance of pure lines derived from heterotic bread wheat hybrids. Aust J Agric Res 45:591–600

    Article  Google Scholar 

  • Papineau J, Huyghe C (2004) Le lupin doux protéagineux. Editions France Agricole, Paris

    Google Scholar 

  • Park T, Casella G (2008) The Bayesian Lasso. J Am Stat Assoc 103:681–686

  • Puritz JB, Hollenbeck CM, Gold JR (2014) dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. PeerJ 2:e431

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajsic P, Weersink A, Navabi A, Pauls KP (2016) Economics of genomic selection: the role of prediction accuracy and relative genotyping costs. Euphytica 210:259–276

    Article  Google Scholar 

  • Riedelsheimer C, Technow F, Melchinger AE (2012) Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines. BMC Genomics 13:452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15:469–485

    Article  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S et al (2016) Genome-enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • SAS Institute (2011) SAS/STAT® 9.3 User's guide. SAS Institute Inc, Cary, NC

    Google Scholar 

  • Searle SR, Casella G, McCulloch CE (2009) Variance components. John Wiley & Sons, New York

    Google Scholar 

  • Soriano Viana JM, Piepho H-P, Silva FF (2016) Quantitative genetics theory for genomic selection and efficiency of breeding value prediction in open-pollinated populations. Sci Agric 73:243–251

    Article  Google Scholar 

  • Stekhoven DJ, Bühlmann P (2012) MissForest–non-parametric missing value imputation for mixed-type data. Bioinformatics 28:112–118

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Article  Google Scholar 

  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS (2017) Genomic selection in dairy cattle: the USDA experience. Ann Rev Anim Biosci 5:309–327

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Elshire Group Ltd. for the excellent GBS genotyping service and to A. Passerini, P. Gaudenzi, S. Proietti, P. Manunza, G. Rochas and N. Rousseau for technical assistance.

Funding

The experiment data for this study were generated by the project ‘Legumes for the agriculture of tomorrow (LEGATO)’ funded by the FP7 of the European Commission (Grant agreement No. 613551) and the projects ‘Increase of protein feed production’ and ‘Plant Genetic Resources - FAO Treaty’ funded by the Italian Ministry of Agricultural, Food and Forestry Policies.

Author information

Authors and Affiliations

Authors

Contributions

PA designed and supervised the research work, obtained financial resources, analysed the phenotypic data and drafted the manuscript. NN was responsible for the bioinformatics pipeline and the definition of genome-enabled models. PA, AMC, NH, MR and LP were responsible for phenotyping experiments. BF collected and verified the quality of DNA samples. All authors approved the manuscript.

Corresponding author

Correspondence to Paolo Annicchiarico.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 193 kb)

ESM 2

(PDF 228 kb)

ESM 3

(PDF 245 kb)

ESM 4

(CSV 4.51 MB)

ESM 5

(PDF 224 kb)

ESM 6

(CSV 1960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annicchiarico, P., Nazzicari, N., Ferrari, B. et al. Genomic prediction of grain yield in contrasting environments for white lupin genetic resources. Mol Breeding 39, 142 (2019). https://doi.org/10.1007/s11032-019-1048-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1048-6

Keywords

Navigation