Advertisement

Molecular Breeding

, 39:114 | Cite as

Use of genomic selection in breeding rice (Oryza sativa L.) for resistance to rice blast (Magnaporthe oryzae)

  • Mao Huang
  • Elias G. Balimponya
  • Emmanuel M. Mgonja
  • Leah K. McHale
  • Ashura Luzi-Kihupi
  • Guo-Liang Wang
  • Clay H. SnellerEmail author
Article

Abstract

Rice blast (RB), caused by the fungal pathogen Magnaporthe oryzae, is a major disease in rice (Oryzae sativa L.) with resistance controlled by major and minor genes. Genomic selection (GS) is a breeding technology applicable for selecting traits controlled by many genes. Our objective was to assess the utility of GS in improving RB resistance. A population of 161 accessions from Africa and another population of 162 accessions from the USA were evaluated for resistance to six and eight RB isolates, respectively. Each rice population was genotyped with single nucleotide polymorphism (SNP) markers. The accuracy of GS was determined using seven models: genomic best linear unbiased prediction (gBLUP), gBLUP with some markers as fixed effects (fgBLUP), gBLUP model with population structure as a covariate (sgBLUP), multitrait gBLUP (mgBLUP), Bayesian (BayesA and BayesC) models, and a multiple linear regression model using significant markers (MLR). Each set of population had accessions with good resistance to multiple isolates. Using cross-validation, the accuracy of gBLUP ranged from 0.15 to 0.72; the gBLUP, sgBLUP, mgBLUP, and Bayesian methods had similar accuracy, while fgBLUP gave the greatest accuracy. Without cross-validation, gBLUP, sgBLUP, fgBLUP, and Bayesian methods were similar and were superior to mgBLUP and MLR. In general, a GS model built on data from one isolate was able to predict the phenotypes generated from other isolates, suggesting common genes controlling resistance across isolates. Our results demonstrate that GS may be a very useful method to improve RB resistance. The fgBLUP model could be used to effectively select for both durable and resistance traits conferred by major genes.

Keywords

Rice blast Genomic selection Accuracy Genotype by sequencing Resistant Susceptible 

Notes

Acknowledgments

The authors are also grateful to Dr. Sneller’s and Wang’s labs at the Ohio State University (OSU) and Dr. Bo Zhou’s Lab at the International Rice Research Institute (IRRI) for their technical assistance.

Funding information

The authors are grateful to the Norman E. Borlaug Leadership Enhancement in Agriculture Program (Borlaug LEAP) and Innovative Agricultural Research Initiative (iAGRI) project of the USAID for providing grants to support this project.

Supplementary material

11032_2019_1023_MOESM1_ESM.docx (57 kb)
ESM 1 (DOCX 56 kb)
11032_2019_1023_MOESM2_ESM.docx (181 kb)
ESM 2 (DOCX 180 kb)

References

  1. Arruda MP, Brown PJ, Lipka AE, Krill AM, Thurber C, Kolb FL (2015) Genomic selection for predicting Fusarium head blight resistance in a wheat breeding program. Plant Genome 8(3):1–2CrossRefGoogle Scholar
  2. Arruda MP, Lipka A, Brown P, Krill A, Thurber C, Brown-Guedira G, Dong Y, Foresman B, Kolb F (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36(7):1–11CrossRefGoogle Scholar
  3. Ballini E, Morel J-B, Droc G, Price A, Courtois B, Notteghem J-L, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe In 21(7):859–868CrossRefGoogle Scholar
  4. Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48Google Scholar
  5. Butler D, Cullis BR, Gilmour A, Gogel B (2009) ASReml-R reference manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane, AustraliaGoogle Scholar
  6. Chaudhary RC (1996) Standard evaluation system for rice. International Rice Research Institute, ManilaGoogle Scholar
  7. Crossa J, Gauch H, Zobel RW (1990) Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci 30(3):493–500CrossRefGoogle Scholar
  8. de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193(2):327–345PubMedCentralCrossRefGoogle Scholar
  9. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem 19:11–15Google Scholar
  10. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4(3):250–255CrossRefGoogle Scholar
  11. Fairhurst T, Dobermann A (2002) Rice in the global food supply. World 5 (7,502):454,349-511,675Google Scholar
  12. Gauch HG (2006) Statistical analysis of yield trials by AMMI and GGE. Crop Sci 46(4):1488–1500CrossRefGoogle Scholar
  13. Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen MS, Bright JM, Beyene Y, Prasanna BM (2015) Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theor Appl Genet 128(10):1957–1968PubMedPubMedCentralCrossRefGoogle Scholar
  14. Grenier C, Cao T-V, Ospina Y, Quintero C, Châtel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS One 10(8):e0136594PubMedPubMedCentralCrossRefGoogle Scholar
  15. Habier D, Fernando RL, Dekkers JC (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177(4):2389–2397PubMedPubMedCentralCrossRefGoogle Scholar
  16. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12(1):186PubMedPubMedCentralCrossRefGoogle Scholar
  17. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):1–12CrossRefGoogle Scholar
  18. Hoffstetter A, Cabrera A, Huang M, Sneller C (2016) Optimizing training population data and validation of genomic selection for economic traits in soft winter wheat. G3: Genes, Genom, Genet 6(9):2919–2928CrossRefGoogle Scholar
  19. Huang M, Cabrera A, Hoffstetter A, Griffey C, Van Sanford D, Costa J, McKendry A, Chao S, Sneller C (2016) Genomic selection for wheat traits and trait stability. Theor Appl Genet 129(9):1697–1710PubMedCrossRefGoogle Scholar
  20. Huang M, Ward B, Griffey C, Van Sanford D, McKendry A, Brown-Guedira G, Tyagi P, Sneller C (2018) The accuracy of genomic prediction between environments and populations for soft wheat traits. Crop Sci 58:2274–2288CrossRefGoogle Scholar
  21. Iwata H, Ebana K, Uga Y, Hayashi T (2015) Genomic prediction of biological shape: elliptic Fourier analysis and kernel partial least squares (PLS) regression applied to grain shape prediction in rice (Oryza sativa L.). PLoS One 10(3):e0120610PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics 9(2):166–177PubMedCrossRefGoogle Scholar
  23. Jia Y, Jannink J-L (2012) Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192(4):1513–1522PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kafiriti E, Dondeyne S, Msomba S, Deckers J, Raes D (2003) Coming to grips with farmers’ variety selection—the case of new improved rice varieties under irrigation in South East Tanzania. Tropicultura 21(4):211–217Google Scholar
  25. Kihoro J, Bosco NJ, Murage H, Ateka E, Makihara D (2013) Investigating the impact of rice blast disease on the livelihood of the local farmers in greater Mwea region of Kenya. SpringerPlus 2(1):308PubMedPubMedCentralCrossRefGoogle Scholar
  26. Kiyosawa S (1982) Genetics and epidemiological modeling of breakdown of plant disease resistance. Annu Rev Phytopathol 20(1):93–117CrossRefGoogle Scholar
  27. Liu W, Liu J, Triplett L, Leach JE, Wang G-L (2014) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241PubMedCrossRefGoogle Scholar
  28. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J-L (2011) Genomic selection in plant breeding: knowledge and prospects. In: Advances in agronomy, vol 110. Elsevier, pp 77–123Google Scholar
  29. Lorenz AJ, Smith KP, Jannink J-L (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52(4):1609–1621CrossRefGoogle Scholar
  30. Marulanda JJ, Mi X, Melchinger AE, Xu J-L, Würschum T, Longin CFH (2016) Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor Appl Genet 129(10):1901–1913PubMedCrossRefGoogle Scholar
  31. Mendiburu FD (2015) Agricolae: statistical procedures for agricultural research. R Package Version 1. 2 - 3. http://CRAN.R-project.org/package=agricolae
  32. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829PubMedPubMedCentralGoogle Scholar
  33. Mgonja EM, Balimponya EG, Kang H, Bellizzi M, Park CH, Li Y, Mabagala R, Sneller C, Correll J, Opiyo S, Talbot NJ, Mitchell T, Wang G-L (2016) Genome-wide association mapping of rice resistance genes against Magnaporthe oryzae isolates from four African countries. Phytopathology 106(11):1359–1365PubMedCrossRefGoogle Scholar
  34. Mgonja EM, Park CH, Kang H, Balimponya EG, Opiyo S, Bellizzi M, Mutiga SK, Rotich F, Ganeshan VD, Mabagala R, Sneller C, Correll J, Zhou B, Talbot NJ, Mitchell T, Wang G-l (2017) Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaporthe oryzae populations in Africa. Phytopathology 107(9):1039–1046PubMedCrossRefGoogle Scholar
  35. Nazarian A, Gezan SA (2016) GenoMatrix: a software package for pedigree-based and genomic prediction analyses on complex traits. J Hered 107(4):372–379PubMedPubMedCentralCrossRefGoogle Scholar
  36. Onaga G, Wydra K, Koopmann B, Séré Y, von Tiedemann A (2015) Population structure, pathogenicity, and mating type distribution of Magnaporthe oryzae isolates from East Africa. Phytopathology 105(8):1137–1145PubMedCrossRefGoogle Scholar
  37. Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, Iwata H (2015) Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128(1):41–53PubMedCrossRefGoogle Scholar
  38. Onogi A, Watanabe M, Mochizuki T, Hayashi T, Nakagawa H, Hasegawa T, Iwata H (2016) Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Theor Appl Genet 129(4):805–817PubMedCrossRefGoogle Scholar
  39. Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198(2):483–495PubMedPubMedCentralCrossRefGoogle Scholar
  40. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  41. Resende MF, Muñoz P, Resende MD, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012) Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190(4):1503–1510PubMedPubMedCentralCrossRefGoogle Scholar
  42. Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179(1):161–173CrossRefGoogle Scholar
  43. Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5(2):51–61CrossRefGoogle Scholar
  44. Rutkoski JE, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, Barbier H, Rouse MN, Jannink J-L, Sorrells ME (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 7(3)Google Scholar
  45. Sharma T, Rai A, Gupta S, Vijayan J, Devanna B, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agribiol Res 1(1):37–52CrossRefGoogle Scholar
  46. Spindel J, Iwata H (2018) Genomic selection in rice breeding. In: Rice genomics, genetics and breeding. Springer, pp 473–496Google Scholar
  47. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink J-L, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(2):e1004982PubMedPubMedCentralCrossRefGoogle Scholar
  48. Spindel J, Begum H, Akdemir D, Collard B, Redoña E, Jannink J, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116(4):395–408PubMedPubMedCentralCrossRefGoogle Scholar
  49. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed and Biotech 2(3):195–212CrossRefGoogle Scholar
  50. Wang Y, Wang D, Deng X, Liu J, Sun P, Liu Y, Huang H, Jiang N, Kang H, Ning Y (2012) Molecular mapping of the blast resistance genes Pi2-1 and Pi51 (t) in the durably resistant rice ‘Tianjingyeshengdao’. Phytopathology 102(8):779–786PubMedCrossRefGoogle Scholar
  51. Wang X, Lee S, Wang J, Ma J, Bianco T, Jia Y (2014) Current advances on genetic resistance to rice blast disease. In: Rice—germplasm, genetics and improvement. InTech, Rijeka. 195–217Google Scholar
  52. Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z (2017) Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity 118(3):302–310PubMedCrossRefGoogle Scholar
  53. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244CrossRefGoogle Scholar
  54. Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci 111(34):12456–12461PubMedCrossRefGoogle Scholar
  55. Yu ZH, Mackill DJ, Bonman JM (1987) Inheritance of resistance to blast in some traditional and improved rice cultivars. Genetics 77:323–326Google Scholar
  56. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zobel RW, Wright MJ, Gauch HG (1988) Statistical analysis of a yield trial. Agron J 80(3):388–393CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mao Huang
    • 1
  • Elias G. Balimponya
    • 2
  • Emmanuel M. Mgonja
    • 3
  • Leah K. McHale
    • 4
  • Ashura Luzi-Kihupi
    • 5
  • Guo-Liang Wang
    • 3
  • Clay H. Sneller
    • 1
    Email author
  1. 1.Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterUSA
  2. 2.Tanzania Official Seed Certification InstituteMtwaraTanzania
  3. 3.Department of Plant PathologyThe Ohio State UniversityColumbusUSA
  4. 4.Department of Horticulture and Crop ScienceThe Ohio State UniversityColumbusUSA
  5. 5.Department of Crop Science and HorticultureSokoine University of AgricultureMorogoroTanzania

Personalised recommendations