Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines

Abstract

Phenotypic evaluation of the drought-tolerant traits and identification of the genetic markers associated with these traits in diverse germplasms are essential for developing drought-tolerant germplasm through molecular breeding. A collection of 210 off-PVP (no longer subject to Plant Variety Protection) maize inbred lines introduced from the USA (ALs) were genotyped using a low-coverage sequencing method and phenotyped in eight environments (location × year × treatment) in China. The CV of phenotypic data for six target traits varied from 5.34 to 20.69% under well-watered (WW) conditions and from 5.46 to 35.98% under drought-stressed (WS) conditions. ALs exhibited higher grain yield per plot (GY) under the WS conditions and premature characteristic compared with the local checks, which are important breeding targets in drought tolerance. Two subgroups, SS and NSS, were identified in this collection based on population structure analysis, PCA, and an NJ tree. A total of 413 trait-associated SNPs under the WW conditions and 696 SNPs under the WS conditions were detected in a GWAS (genome-wide association study) analysis, with the phenotypic variation explained by each SNP to the target traits varied from 10.02 to 25.40%. In the genomic prediction (GP) analysis, the prediction models incorporating trait-marker associations showed higher prediction accuracies than the prediction models using an equivalent number of randomly selected SNPs for all the six traits evaluated under both the WW and WS conditions. The results observed in this study provide valuable information for understanding the genetic variation of drought stress tolerance in maize, and show great potential to improve drought stress tolerance in maize via genomic selection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aslam M, Maqbool MA, Cengiz R (2015) Drought stress in maize (Zea mays L.): Effects, resistance mechanisms, global achievements and biological strategies for improvement. SpringerBriefs in Agriculture. DOI https://doi.org/10.1007/978-3-319-25442-5 Springer International Publishing

    Google Scholar 

  2. Banerjee A, Roychoudhury A (2017) Epigenetic regulation during salinity and drought stress in plants: histone modifications and DNA methylation. 11. https://doi.org/10.1016/j.plgene.2017.05.011

    CAS  Article  Google Scholar 

  3. Banziger M, Edmeades GO, Beck DL, Bellon MR (2000) Breeding for drought and nitrogen stress tolerance in maize: From theory to practice. Mexico, D.F.: CIMMYT.

  4. Betran FJ, Beck D, Banziger M, Edmeades GO (2003) Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crop Res 83:51–65. https://doi.org/10.1016/S0378-4290(03)00061-3

    Article  Google Scholar 

  5. Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu R, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna BM, Banziger M, Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163. https://doi.org/10.2135/cropsci2014.07.0460

    Article  Google Scholar 

  6. Bhaskara GB, Yang TH, Verslues PE (2015) Dynamic proline metabolism: importance and regulation in water limited environments. Front Plant Sci 6:484. https://doi.org/10.3389/fpls.2015.00484

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bian Y, Holland JB (2017) Enhancing genomic prediction with genome-wide association studies in multiparental maize populations. Heredity 118:585–593. https://doi.org/10.1038/hdy.2017.4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Biradar CM, Thenkabail PS, Noojipady P, Li YJ, Dheeravath V, Turral H, Velpuri M, Gumma MK, Gangalakunta ORP, Cai XL, Xiao XM, Schull MA, Alankara RD, Gunasinghe S, Mohideen S (2009) A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int J Appl Earth Obs 11:114–129. https://doi.org/10.1016/j.jag.2008.11.002

    Article  Google Scholar 

  9. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308

    CAS  Article  PubMed  Google Scholar 

  10. Campos G, Gianola D, Allison DB (2010) Predicting genetic predisposition in humans: the promise of whole-genome markers. Nat Rev Genet 11:880–886. https://doi.org/10.1038/nrg2898

    CAS  Article  PubMed  Google Scholar 

  11. Campos H, Cooper A, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crop Res 90:19–34. https://doi.org/10.1016/j.fcr.2004.07.003

    Article  Google Scholar 

  12. Cerrudo D, Cao SL, Yuan YB, Martinez C, Suarez EA, Babu R, Zhang XC, Trachsel S (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9. https://doi.org/10.3389/Fpls.2018.00366

  13. Chen J, Xu W, Velten J, Xin Z, Stout J (2012) Characterization of maize inbred lines for drought and heat tolerance. J Soil Water Conserv 67:354–364. https://doi.org/10.2489/jswc.67.5.354

    Article  Google Scholar 

  14. Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Ceron-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60. https://doi.org/10.1038/hdy.2013.16

    CAS  Article  PubMed  Google Scholar 

  15. Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  16. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome-Us 4:250–255. https://doi.org/10.3835/plantgenome2011.08.0024

    Article  Google Scholar 

  17. Fu XT, Dou JZ, Mao JX, Su HL, Jiao WQ, Zhang LL, Hu XL, Huang XT, Wang S, Bao ZM (2013) RADtyping: an integrated package for accurate de novo codominant and dominant RAD genotyping in mapping populations. PLoS One 8:e79960. https://doi.org/10.1371/journal.pone.0079960

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gama EEG, Hallauer AR (1977) Relation between inbred and hybrid traits in maize 1. Crop Sci 17:703–706. https://doi.org/10.2135/cropsci1977.0011183X001700050007x

    Article  Google Scholar 

  19. Hao Z-F, Li X-H, Su Z-J, Xie C-X, Li M-S, Liang X-L, Weng J-F, Zhang D-G, Li L, Zhang S-H (2011) A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci 61:101–108

    Article  Google Scholar 

  20. Hu GH, Li Z, Lu YC, Li CX, Gong SC, Yan SQ, Li GL, Wang MQ, Ren HL, Guan HT, Zhang ZW, Qin DL, Chai MZ, Yu JP, Li Y, Yang DG, Wang TY, Zhang ZW (2017) Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci Rep-Uk 7:10840. https://doi.org/10.1038/S41598-017-11318-6

    Article  Google Scholar 

  21. Hwang EY, Song QJ, Jia GF, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1. https://doi.org/10.1186/1471-2164-15-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crop Res 107:221–231. https://doi.org/10.1016/j.fcr.2008.02.007

    Article  Google Scholar 

  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  Google Scholar 

  24. Kurtz B, Gardner CAC, Millard MJ, Nickson T, Smith JSC (2016) Global access to maize germplasm provided by the US National Plant Germplasm System and by US plant breeders. Crop Sci 56:931–941. https://doi.org/10.2135/cropsci2015.07.0439

    CAS  Article  Google Scholar 

  25. Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967. https://doi.org/10.1093/bioinformatics/btp336

    CAS  Article  PubMed  Google Scholar 

  26. Li YL, Dong YB, Niu SZ, Cui DQ (2007) The genetic relationship among plant-height traits found using multiple-trait QTL mapping of a dent corn and popcorn cross. Genome 50:357–364. https://doi.org/10.1139/G07-018

    Article  PubMed  Google Scholar 

  27. Liu L, Du YF, Huo DA, Wang M, Shen XM, Yue B, Qiu FZ, Zheng YL, Yan JB, Zhang ZX (2015) Genetic architecture of maize kernel row number and whole genome prediction. Theor Appl Genet 128:2243–2254. https://doi.org/10.1007/s00122-015-2581-2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu YL, Hao ZF, Xie CX, Crossa J, Araus JL, Gao SB, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan GT, Li XH, Rong TZ, Zhang SH, Xu YB (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res 124:37–45. https://doi.org/10.1016/j.fcr.2011.06.003

    Article  Google Scholar 

  29. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biology 14 (6)

  30. Mao HD, Wang HW, Liu SX, Li Z, Yang XH, Yan JB, Li JS, Tran LSP, Qin F (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326. https://doi.org/10.1038/Ncomms9326

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Newton RJ, Bhaskaran S, Puryear JD, Smith RH (1986) Physiological changes in cultured sorghum cells in response to induced water stress. II Soluble carbohydrates and organic acids. Plant Physiol 81:626–629. https://doi.org/10.1104/pp.81.2.626

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Pressoir G, Brown PJ, Zhu WY, Upadyayula N, Rocheford T, Buckler ES, Kresovich S (2009) Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2. Plant J 58:618–628. https://doi.org/10.1111/j.1365-313X.2009.03802.x

    CAS  Article  PubMed  Google Scholar 

  33. Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, Melchinger AE (2013) Genomic predictability of interconnected biparental maize populations. Genetics 194:493–49+. https://doi.org/10.1534/genetics.113.150227

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8. https://doi.org/10.3389/Fpls.2017.00550

  35. Spindel JE, Begum H, Akdemir D, Collard B, Redona E, Jannink JL, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408. https://doi.org/10.1038/hdy.2015.113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Tang Y, Liu XL, Wang JB, Li M, Wang QS, Tian F, Su ZB, Pan YC, Liu D, Lipka AE, Buckler ES, Zhang ZW (2016) GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome-Us 9. https://doi.org/10.3835/plantgenome2015.11.0120

    Article  Google Scholar 

  37. Temel A, Janack B, Humbeck K (2017) Drought stress-related physiological changes and histone modifications in barley primary leaves at HSP17 gene. Agronomy 7:43. https://doi.org/10.3390/agronomy7020043

    CAS  Article  Google Scholar 

  38. Timpa JD, Burke JJ, Quisenberry JE, Wendt CW (1986) Effects of water stress on the organic acid and carbohydrate compositions of cotton plants. Plant Physiol 82:724–728. https://doi.org/10.1104/pp.82.3.724

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Torres RO, McNally KL, Cruz CV, Serraj R, Henry A (2013) Screening of rice Genebank germplasm for yield and selection of new drought tolerance donors. Field Crop Res 147:12–22. https://doi.org/10.1016/j.fcr.2013.03.016

    Article  Google Scholar 

  40. Vivek BS, Krishna GK, Vengadessan V, Babu R, Zaidi PH, Kha LQ, Mandal SS, Grudloyma P, Takalkar S, Krothapalli K, Singh IS, Ocampo ETM, Xingming F, Burgueno J, Azrai M, Singh RP, Crossa J (2017) Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome-Us 10. https://doi.org/10.3835/plantgenome2016.07.0070

    CAS  Article  Google Scholar 

  41. Wang N, Wang ZP, Liang XL, Weng JF, Lv XL, Zhang DG, Yang J, Yong HJ, Li MS, Li FH, Jiang LY, Zhang SH, Hao ZF, Li XH (2016a) Identification of loci contributing to maize drought tolerance in a genome-wide association study. Euphytica 210:165–179. https://doi.org/10.1007/s10681-016-1688-0

    CAS  Article  Google Scholar 

  42. Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810. https://doi.org/10.1038/Nmeth.2023

    CAS  Article  PubMed  Google Scholar 

  43. Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB, Yang XH, Qin F (2016b) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241. https://doi.org/10.1038/ng.3636

    CAS  Article  PubMed  Google Scholar 

  44. Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824. https://doi.org/10.1007/s00122-008-0715-5

    CAS  Article  PubMed  Google Scholar 

  45. Wu Y, San Vicente F, Huang K, Dhliwayo T, Costich DE, Semagn K, Sudha N, Olsen M, Prasanna BM, Zhang X, Babu R (2016) Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theor Appl Genet 129:753–765. https://doi.org/10.1007/s00122-016-2664-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Xue YD, Warburton ML, Sawkins M, Zhang XH, Setter T, Xu YB, Grudloyma P, Gethi J, Ribaut JM, Li WC, Zhang XB, Zheng YL, Yan JB (2013) Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor Appl Genet 126:2587–2596. https://doi.org/10.1007/s00122-013-2158-x

    CAS  Article  PubMed  Google Scholar 

  47. Yuan YB, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, Zhang A, Liu YB, Wang N, Hao ZF, San Vicente F, Olsen MS, Prasanna BM, Lu YL, Zhang XC (2019) Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci 9. https://doi.org/10.3389/Fpls.2018.01919

  48. Zhao XQ, Peng YL, Zhang JW, Fang P, Wu BY (2018) Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Sci 58:507–520. https://doi.org/10.2135/cropsci2016.12.0991

    CAS  Article  Google Scholar 

  49. Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Su L, Wei W, Pan L, Zhou DX (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67:1703–1713. https://doi.org/10.1093/jxb/erv562

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from the National Natural Science Foundation of China (31661143010), the National Key Research and Development Program of China (2016YFD0101803), and the China Scholarship Council.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhuanfang Hao or Xuecai Zhang or Xinhai Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Liu, B., Liang, X. et al. Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. Mol Breeding 39, 113 (2019). https://doi.org/10.1007/s11032-019-1013-4

Download citation

Keywords

  • Maize
  • Off-PVP inbred lines
  • Drought tolerance
  • GWAS
  • Genomic prediction