Skip to main content
Log in

Diversity of Puroindoline genes and their association with kernel hardness in Chinese wheat cultivars and landraces

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Kernel hardness is a key trait that greatly affects the milling and baking qualities of common wheat. Kernel hardness is largely controlled by Pina and Pinb genes. Here, we investigate the allelic diversity of Pina and Pinb genes in a collection of 107 Chinese wheat cultivars and landraces. The kernel hardness values of these accessions were determined in two field seasons (2016/2017 and 2017/2018 seasons), and they were strongly correlated between the 2 years, with hardness indexes ranging from 5.4 to 91.8. Five known Pina-D1 alleles and four known Pinb-D1 alleles were detected. In particular, we identified a novel Pina-null allele (designated Pina-D1z) with a 3382-bp deletion that can be detected by the new molecular marker Pina-N5. We also identified a Pina/Pinb double null allele containing a ~ 29-kb deletion. They are useful genotypes for kernel texture improvement. The most frequent genotypes in these accessions were Pina-D1a/Pinb-D1a and Pina-D1a/Pinb-D1b (39.3% and 34.6%, respectively), followed by Pina-D1a/Pinb-D1p (13.2%). A comparison of genotypes between the present study and previous studies suggests that Chinese wheat landraces have more allelic variations in the Pina gene than do cultivars. An association analysis of Puroindolines with kernel hardness shows that 15 Pina-D1 alleles and 6 Pinb-D1 alleles could be associated with hard-kernel phenotypes in common wheat. Notably, this study suggests that Chinese landraces are a valuable resource of genetic variability in Puroindoline genes and provides a deeper understanding of the genotype-to-phenotype association of Puroindoline genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alfred RL, Palombo EA, Panozzo JF, Bhave M (2013) The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action. PLoS One 8:e75488

    Article  CAS  Google Scholar 

  • Alfred RL, Palombo EA, Panozzo JF, Bhave M (2014) The co-operative interaction of puroindolines in wheat grain texture may involve the hydrophobic domain. J Cereal Sci 60:323–330

    Article  CAS  Google Scholar 

  • Ali I, Sardar Z, Rasheed A, Mahmood T (2015) Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1. J Theor Biol 376:1–7

    Article  CAS  Google Scholar 

  • Arbelbide M, Bernardo R (2006) Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theor Appl Genet 112:885–890

    Article  CAS  Google Scholar 

  • Beecher B, Bettge A, Smidansky E, Giroux M (2002) Expression of wild-type pinB sequence in transgenic wheat complements a hard phenotype. Theor Appl Genet 105:870–877

    Article  CAS  Google Scholar 

  • Bhave M, Morris CF (2008a) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219

    Article  CAS  Google Scholar 

  • Bhave M, Morris CF (2008b) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol 66:221–231

    Article  CAS  Google Scholar 

  • Boehm JD, Ibba MI, Kiszonas AM, See DR, Skinner DZ, Morris CF (2017) Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat ( Triticum aestivum L.) bi-parental population. J Cereal Sci 79:57–65

    Article  Google Scholar 

  • Brites CM, Bagulho AS, Maria LB (2008) Effect of wheat puroindoline alleles on functional properties of starch. Eur Food Res Technol 226:1205–1212

    Article  CAS  Google Scholar 

  • Cane K, Spackman M, Eagles HA (2004) Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust J Agric Res 55:5564–5569

    Article  Google Scholar 

  • Chen F, He ZH, Xia XC, Xia LQ, Zhang XY, Lillemo M, Morris CF (2006) Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet 112:400–409

    Article  CAS  Google Scholar 

  • Chen F, Yu YX, Xia XC, He ZH (2007) Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (Triticum sestivum ssp. yunnanense king). Euphytica 156:39–46

    Article  CAS  Google Scholar 

  • Chen F, Zhang FY, Cheng XY, Craig M, Xu HX, Dong ZD, Zhan KH, Cui DQ (2010a) Association of Puroindoline b-B2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of the Yellow and Huai Valleys of China. J Cereal Sci 52:247–253

    Article  CAS  Google Scholar 

  • Chen F, Zhang FY, Morris C, He ZH, Xia XC, Cui DQ (2010b) Molecular characterization of the Puroindoline a-D1b allele and development of an STS marker in wheat (Triticum aestivum L.). J Cereal Sci 52:80–82

    Article  CAS  Google Scholar 

  • Chen F, Xu HX, Zhang FY, Xia XC, He ZH, Wang DW, Dong ZD, Zhan KH, Cheng XY, Cui DQ (2011) Physical mapping of puroindoline b-2 genes and molecular characterization of a novel variant in durum wheat (Triticum turgidum L.). Mol Breed 28:153–161

    Article  Google Scholar 

  • Chen F, Zhang FY, Xia XC, Dong ZD, Cui DQ (2012) Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein. Mol Breed 29:371–378

    Article  CAS  Google Scholar 

  • Chen F, Li HH, Cui DQ (2013) Discovery, distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.). BMC Plant Biol 13:125

    Article  Google Scholar 

  • Clifton LA, Green RJ, Frazier RA (2007) Puroindoline-b mutations control the lipid binding interactions in mixed puroindoline-a:puroindoline-b systems. Biochemistry 46:13929–13937

    Article  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Flament P, Charmet G (2005) Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet 111:1409–1419

    Article  Google Scholar 

  • Feiz L, Beecher BS, Martin JM, Giroux MJ (2009a) In planta mutagenesis determines the functional regions of the wheat puroindoline proteins. Genetics 183:853–860

    Article  CAS  Google Scholar 

  • Feiz L, Martin JM, Giroux MJ (2009b) Creation and functional analysis of new Puroindoline alleles in Triticum aestivum. Theor Appl Genet 118:247–257

    Article  CAS  Google Scholar 

  • Gazza L, Taddei F, Corbellini M, Cacciatori P, Pogna NE (2008) Genetic and environmental factors affecting grain texture in common wheat. J Cereal Sci 47:52–58

    Article  CAS  Google Scholar 

  • Gedye KR, Morris CF, Bettge AD (2004) Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theor Appl Genet 109:1597–1603

    Article  CAS  Google Scholar 

  • Geneix N, Dalgalarrondo M, Bakan B, Rolland-Sabaté A, Elmorjani K, Marion D (2015) A single amino acid substitution in puroindoline b impacts its self-assembly and the formation of heteromeric assemblies with puroindoline a. J Cereal Sci 64:116–125

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1997) A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci U S A 95:6262–6266

    Article  CAS  Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374

    Article  CAS  Google Scholar 

  • Gollan P, Smith K, Bhave M (2007) Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. J Cereal Sci 45:184–198

    Article  CAS  Google Scholar 

  • Greenwell P, Schofield JD (1986) A starch granule protein associated with endosperm softness in wheat. Cereal Chem 63:379–380

    CAS  Google Scholar 

  • He GY, Rooke L, Steele S, Békés F, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR, Lazzeri PA (1999) Transformation of pasta wheat (Triticum turgidum L. var. durum ) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Mol Breed 5:377–386

    Article  CAS  Google Scholar 

  • Hogg AC, Sripo T, Beecher B, Martin JM, Giroux MJ (2004) Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theor Appl Genet 108:1089–1097

    Article  CAS  Google Scholar 

  • Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G (2002) Mapping QTLs for grain hardness and puroindoline content in wheat ( Triticum aestivum L.). Theor Appl Genet 106:19–27

    Article  CAS  Google Scholar 

  • Jolly CJ, Rahman S, Kortt AA, Higgins TJ (1993) Characterisation of the wheat Mr 15000 “grain-softness protein” and analysis of the relationship between its accumulation in the whole seed and grain softness. Theor Appl Genet 86:589–597

    Article  CAS  Google Scholar 

  • Kammeraad JD, Giroux MJ, Hogg AC, Martin JM (2016) Mutagenesis derived puroindoline alleles in Triticum aestivum and their impacts on milling and bread quality. Cereal Chem 93:3125–3144

    Article  Google Scholar 

  • Krishnamurthy K, Giroux MJ (2001) Expression of wheat puroindoline genes in transgenic rice enhances grain softness. Nat Biotechnol 19:162–166

    Article  CAS  Google Scholar 

  • Kumar R, Arora S, Singh K, Garg M (2015) Puroindoline allelic diversity in Indian wheat germplasm and identification of new allelic variants. Breed Sci 65:319–326

    Article  CAS  Google Scholar 

  • Lasme P, Oury F, Michelet C, Abecassis J, Mabille F, Bar L’Helgouac’h C, Lullien-Pellerinm V (2012) A study of puroindoline b gene involvement in the milling behavior and hard-type common wheats. Cereal Chem 89:44–51

    Article  CAS  Google Scholar 

  • Li GY, He ZH, Lillemo M, Sun QX, Xia XC (2008) Molecular characterization of allelic variations at Pina and Pinb loci in Shandong wheat landraces, historical and current cultivars. J Cereal Sci 47:510–517

    Article  CAS  Google Scholar 

  • Li Y, Wang Q, Li X, Xiao X, Sun F, Wang C, Hu W, Feng Z, Chang J, Chen M, Wang YS, Li KX, Yang GX, He GY (2012) Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum). PLoS One 7:e50057

    Article  CAS  Google Scholar 

  • Li Y, Mao X, Wang Q, Zhang JR, Li XY, Ma FY, Sun FS, Chang JL, Chen MJ, Wang YS, Li KX, Yang GX, He GY (2014) Overexpression of Puroindoline a gene in transgenic durum wheat (Triticum turgidum ssp. durum) leads to a medium–hard kernel texture. Mol Breed 33:545–554

    Article  CAS  Google Scholar 

  • Lillemo M, Chen F, Xia XC, William M, Peña RJ, Trethowan R, He Z (2006) Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. J Cereal Sci 44:86–92

    Article  CAS  Google Scholar 

  • Ma X, Sajjad M, Wang J, Yang W, Sun J, Li X, Zhang A, Liu D (2017) Diversity, distribution of Puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biol 17:158

    Article  Google Scholar 

  • Mark W, Wan Y, Paola T, Michelle L, John S, Rowanac M, Peterr S (2008a) Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. J Cereal Sci 48:722–728

    Article  Google Scholar 

  • Mark Z, Abirami R, Mrinal B (2008b) Evidence of physical interactions of puroindoline proteins using the yeast two-hybrid system. Plant Sci 175:307–311

    Article  Google Scholar 

  • Martin JM, Frohberg RC, Morris CF, Talbert LE, Giroux MJ (2001) Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41:228–234

    Article  CAS  Google Scholar 

  • Martin JM, Meyer FD, Smidansky ED, Wanjugi H, Blechl AE, Giroux MJ (2006) Complementation of the pina (null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat. Theor Appl Genet 113:1563–1570

    Article  CAS  Google Scholar 

  • Martin JM, Meyer FD, Morris CF, Giroux MJ (2007) Pilot scale milling characteristics of transgenic isolines of a hard wheat over-expressing puroindolines. Crop Sci 47:497–506

    Article  Google Scholar 

  • Mergoum M, Schatz BG, Harilal VE, Kianian SF, Simsek S, Elias E, Alamri MS, Kumar A, Bassi FM (2013) Agronomic and quality QTL mapping in spring wheat. J Plant Breed Genet 1:19–33

    Google Scholar 

  • Miao YJ, Chen L, Wang C, Wang YJ, Zheng Q, Gao CB, Yang GX, He GY (2012) Expression, purification and antimicrobial activity of puroindoline A protein and its mutants. Amino Acids 43:1689–1696

    Article  CAS  Google Scholar 

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    Article  CAS  Google Scholar 

  • Morris CF, Bhaveb M (2008) Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. J Cereal Sci 48:277–287

    Article  CAS  Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brownguedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat x synthetic wheat population. Theor Appl Genet 112:787–796

    Article  CAS  Google Scholar 

  • Pasha I, Anjum FM, Morris CF (2010) Grain hardness: a major determinant of wheat quality. Food Sci Technol Int 16:511–522

    Article  CAS  Google Scholar 

  • Ramalingam A, Palombo EA, Bhave M (2012) The Pinb-2 genes in wheat comprise a multigene family with great sequence diversity and important variants. J Cereal Sci 56:171–180

    Article  CAS  Google Scholar 

  • Stacey J, Isaac PG (1994) Isolation of DNA from plants. Methods Mol Biol 28:9–15

    CAS  PubMed  Google Scholar 

  • Takata K, Ikeda T, Yanaka M, Matsunaka H, Seki M, Ishikawa N, Yamauchi H (2010) Comparison of five puroindoline alleles on grain hardness and flour properties using near isogenic wheat lines. Breed Sci 60:228–232

    Article  Google Scholar 

  • Tranquilli G, Heaton J, Chicaiza O, Dubcovsky J (2002) Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Sci 42:1812–1817

    Article  CAS  Google Scholar 

  • Tsilo TJ, Simsek S, Ohm JB, Hareland GA, Chao S, Anderson JA (2011) Quantitative trait loci influencing endosperm texture, dough-mixing strength, and bread-making properties of the hard red spring wheat breeding lines. Genome 54:460–470

    Article  CAS  Google Scholar 

  • Wang J, Sun JZ, Liu DC, Yang WL, Wang DW, Tong YP, Zhang AM (2008) Analysis of Pina and Pinb alleles in the micro-core collections of Chinese wheat germplasm by Ecotilling and identification of a novel Pinb allele. J Cereal Sci 48:836–842

    Article  CAS  Google Scholar 

  • Xia LQ, Chen F, He ZH, Chen XM, Morris CF (2005) Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chem 82:38–43

    Article  CAS  Google Scholar 

  • Zhang J, Martin JM, Beecher B, Morris CF, Hannah LC, Giroux MJ (2009) Seed-specific expression of the wheat puroindoline genes improves maize wet milling yields. Plant Biotechnol J 7:733–743

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Genetically Modified New Varieties of Major Projects of China (2016ZX08010004-004), the National Natural Science Foundation of China (Nos. 31771418, 31570261), and the Key Project of Hubei Province (2017AHB041).

Author information

Authors and Affiliations

Authors

Contributions

G.H., G.Y., X.L., and Y.L. conceived and designed the experiments. X.L. and M.Z. performed the experiments. M.Z. and X.Y. analyzed the data. J.C. and R.H. contributed reagents/materials/analysis tools. X.L., Y.L., G.H., and Y.W. wrote the paper.

Corresponding authors

Correspondence to Guangxiao Yang, Yuesheng Wang or Guangyuan He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Zhang, M. et al. Diversity of Puroindoline genes and their association with kernel hardness in Chinese wheat cultivars and landraces. Mol Breeding 39, 61 (2019). https://doi.org/10.1007/s11032-019-0967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-0967-6

Keywords