Advertisement

Molecular Breeding

, 39:42 | Cite as

Mapping and verification of grain shape QTLs based on high-throughput SNP markers in rice

  • Junxiao Chen
  • Hao Zhou
  • Yuan Gu
  • Duo Xia
  • Bian Wu
  • Guanjun Gao
  • Qinglu Zhang
  • Yuqing HeEmail author
Article
  • 217 Downloads

Abstract

Grain shape is an important trait that determines appearance quality in rice. In order to dissect the genetic basis of this complex trait, we constructed an F2 and derived F2:3 lines from a cross between a long-grain variety and one with an intermediate grain length. The F2 population was genotyped by the RICE6K array to construct a high-density linkage map. A total of 30 quantitative trait loci (QTL) for grain shape were detected over 2 years. A major QTL cluster on chromosome 7 had a strong effect on grain length and width, consistent with the effect of GL7/GW7. The other QTLs, qGL2, qGW2, and qGL12, had large effects on grain shape and were detected in both years. The effects of four QTL on seed size as well as grain yield were then validated by using BC1F6 populations derived from selected F3 plants with residual heterozygous genotypes on each QTL region. Our study indicated that the SNP array was an efficient genotyping method for QTL mapping, and the novel QTL, qGW2 and qGL12, provided insight into the genetic basis of grain shape as well as additional genetic resources for developing elite rice varieties.

Keywords

Oryza sativa L. Grain shape Quantitative trait loci RICE6K array Breeding 

Notes

Author contributions

J.C. analyzed the data and wrote the paper. H.Z. and D.X. analyzed the data. Y.G., B.W., G.G. and Q.Z. participated in the field management and logistic work. Y.H. designed and supervised the study.

Funding information

This work was supported by grants from the National Program on R&D of Transgenic Plants (2016ZX08009003-004) and the National Natural Science Foundation (91635302), and earmarked fund for Agriculture Research System (CARS-01-03) in China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2019_955_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1411 kb)

References

  1. Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2:15195.  https://doi.org/10.1038/nplants.2015.195 CrossRefPubMedGoogle Scholar
  2. Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y (2017) Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10:685–694.  https://doi.org/10.1016/j.molp.2017.03.009 CrossRefPubMedGoogle Scholar
  3. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171.  https://doi.org/10.1007/s00122-006-0218-1 CrossRefPubMedGoogle Scholar
  4. Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139.  https://doi.org/10.1016/j.tplants.2008.12.004 CrossRefPubMedGoogle Scholar
  5. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O'Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DP (2011) Solutions for a cultivated planet. Nature 478:337–342.  https://doi.org/10.1038/nature10452 CrossRefPubMedGoogle Scholar
  6. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18.  https://doi.org/10.1038/hdy.2008.35 CrossRefPubMedGoogle Scholar
  7. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465.  https://doi.org/10.1016/j.molp.2015.07.002 CrossRefPubMedGoogle Scholar
  8. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967.  https://doi.org/10.1038/ng.695 CrossRefPubMedGoogle Scholar
  9. Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2011) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39.  https://doi.org/10.1038/ng.1018 CrossRefPubMedGoogle Scholar
  10. Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32.  https://doi.org/10.1016/j.pbi.2016.05.008 CrossRefPubMedGoogle Scholar
  11. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269.  https://doi.org/10.1038/ng.977 CrossRefPubMedGoogle Scholar
  12. Li S, Gao F, Xie K, Zeng X, Cao Y, Zeng J, He Z, Ren Y, Li W, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P (2016) The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J 14:2134–2146.  https://doi.org/10.1111/pbi.12569 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants 3:17043.  https://doi.org/10.1038/nplants.2017.43 CrossRefPubMedGoogle Scholar
  14. Pasquini G, Barba M, Hadidi A, Faggioli F, Negri R, Sobol I, Tiberini A, Caglayan K, Mazyad H, Anfoka G, Ghanim M, Zeidan M, Czosnek H (2008) Oligonucleotide microarray-based detection and genotyping of plum pox virus. J Virol Methods 147:118–126.  https://doi.org/10.1016/j.jviromet.2007.08.019 CrossRefPubMedGoogle Scholar
  15. Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating cyclin-T1;3. Cell Res 22:1666–1680.  https://doi.org/10.1038/cr.2012.151 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Sham A, Moustafa K, Al-Shamisi S, Alyan S, Iratni R, AbuQamar S (2017) Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea. PLoS One 12(2):e0172343.  https://doi.org/10.1371/journal.pone.0172343 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028.  https://doi.org/10.1038/ng.169 CrossRefPubMedGoogle Scholar
  18. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456.  https://doi.org/10.1038/ng.3518 CrossRefPubMedGoogle Scholar
  19. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630.  https://doi.org/10.1038/ng2014 CrossRefPubMedGoogle Scholar
  20. Tan C, Han Z, Yu H, Zhan W, Xie W, Chen X, Zhao H, Zhou F, Xing Y (2013) QTL scanning for rice yield using a whole genome SNP array. J Genet Genomics 40:629–638.  https://doi.org/10.1016/j.jgg.2013.06.009 CrossRefPubMedGoogle Scholar
  21. Thomson MJ, Singh N, Dwiyanti MS, Wang DR, Wright MH, Perez FA, DeClerck G, Chin JH, Malitic-Layaoen GA, Juanillas VM, Dilla-Ermita CJ, Mauleon R, Kretzschmar T, McCouch SR (2017) Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications. Rice 10:40.  https://doi.org/10.1186/s12284-017-0181-2 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954.  https://doi.org/10.1038/ng.2327 CrossRefPubMedGoogle Scholar
  23. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015a) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47(8):949–954.  https://doi.org/10.1038/ng.3352 CrossRefPubMedGoogle Scholar
  24. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q (2015b) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948.  https://doi.org/10.1038/ng.3346 CrossRefPubMedGoogle Scholar
  25. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209.  https://doi.org/10.1038/cr.2008.307 CrossRefPubMedGoogle Scholar
  26. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087.  https://doi.org/10.1038/ncomms6087 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yndgaard F, Solberg SO (2016) Analysing genebank collections using “R”: making trait information widely available to users. Gene ConserveGoogle Scholar
  28. Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6(3):e17595.  https://doi.org/10.1371/journal.pone.0017595 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yu H, Xie W, Li J, Zhou F, Zhang Q (2014) A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J 12:28–37.  https://doi.org/10.1111/pbi.12113 CrossRefPubMedGoogle Scholar
  30. Yun P, Zhu Y, Wu B, Gao G, Sun P, Zhang Q, He Y (2016) Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice. Mol Breed 36.  https://doi.org/10.1007/s11032-016-0600-x
  31. Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci U S A 104:16402–16409.  https://doi.org/10.1073/pnas.0708013104 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhou H, Li P, Xie W, Hussain S, Li Y, Xia D, Zhao H, Sun S, Chen J, Ye H (2017) Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice. Mol Plant 10:634–644CrossRefGoogle Scholar
  33. Zhou H, Yun P, He Y (2019) Rice appearance quality. In: Bao J (ed) Rice, 4th edn. AACC International Press, pp 371–383.  https://doi.org/10.1016/B978-0-12-811508-4.00011-3
  34. Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118.  https://doi.org/10.1146/annurev-genet-120213-092138 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular BreedingHuazhong Agricultural UniversityWuhanChina

Personalised recommendations