Skip to main content
Log in

Precise transfers of genes for high grain iron and zinc from wheat-Aegilops substitution lines into wheat through pollen irradiation

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Nearly 2 billion people worldwide are suffering from iron (Fe) deficiency anemia and zinc (Zn) deficiency. The available elite bread wheat cultivars have inherently low grain micronutrient content. Biofortification for grain Fe and Zn content is one of the most feasible and cost-effective approach for combating widespread deficiency of the micronutrients. QTL controlling high grain Fe and Zn have been mapped on groups 2 and 7 chromosomes of Triticeae. The present study was initiated for precise transfers of genes for high grain Fe and Zn on group 2 and 7 chromosomes of wheat-Aegilops substitution lines to wheat cultivars using pollen radiation hybridization. The pollen radiation hybrids (PRH1) derived from 1.75 krad irradiated spikes showed the presence of univalents and multivalents in meiotic metaphase-I indicating the effectiveness of radiation dose. In the advanced generation PRH5, the plants selected with stable chromosome number and high grain Fe and Zn content were analyzed with wheat groups 2 and 7 chromosome specific intron targeted amplified polymorphism (ITAP) markers of the metal homeostasis genes to monitor the transfers of alien genes from the substituted Aegilops chromosomes. The group 2 chromosome derivatives showed the presence of NAS2, FRO2, VIT1, and ZIP2 Aegilops genes whereas the group 7 derivatives had YSL15, NAM, NRAMP5, IRO3, and IRT2 Aegilops genes. The pollen radiation hybrids of both the groups 2 and 7 chromosomes showed more than 30% increase in grain Fe and Zn content with improved yield than the elite wheat cultivar PBW343 LrP indicating small and compensating transfers of metal homeostasis genes of Aegilops into wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey RL, West KP Jr, Black RE (2015) The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66(2):22–33

    Article  PubMed  CAS  Google Scholar 

  • Benoist BD, McLean E, Egll I, Cogswell M (2008) Worldwide prevalence of anaemia 1993–2005: WHO global database on anaemia.Geneva

  • Bie T, Wang L, He H, Qi Z, Feng Y, Chen Q, Li H, Chen P (2007) Molecular cytogenetic analysis of a Triticum aestivum-Haynaldia villosa reciprocal chromosomal translocation induced by pollen irradiation. Acta Agron Sin 33:1432–1438

    Google Scholar 

  • Cakmak I, Ozkan H, Braun H, Welch R, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food Nutr Bull 21(4):401–403

    Article  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Review: biofortification of durum wheat with zinc and iron. Cereal Chem 87(1):10–20

    Article  CAS  Google Scholar 

  • Calderini DF, Ortiz-Monasterio I (2003) Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci 43(1):141–151

    Article  CAS  Google Scholar 

  • Copenhagen Consensus Centre (2008) Copenhagen consensus 2008

  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breeding 31:477–484

    Article  CAS  Google Scholar 

  • Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breed 125(5):529–531

    Article  CAS  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133(3):1102–1110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixon J, Braun H, Crouch J (2009) Overview: transitioning wheat research to serve the future needs of the developing world. In: Wheat facts and futures,CIMMYT pp 1–25

  • Dvorak J, Knott DR (1977) Homoeologous chromatin exchange in a radiation-induced gene transfer. Can J Genet Cytol 19:125–131

    Article  Google Scholar 

  • Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, Kruppa K, Molnár-Láng M (2014) Increased micronutrient content (Zn, Mn) in the 3Mb (4B) wheat–Aegilops biuncialis substitution and 3Mb. 4BS translocation identified by GISH and FISH. Genome 57(2):61–67

  • Friebe B, Qi L, Nasuda S, Zhang P, Tuleen N, Gill B (2000) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101(1):51–58

    Article  Google Scholar 

  • Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86:141–149

    PubMed  CAS  Google Scholar 

  • Genc Y, Verbyla A, Torun A, Cakmak I, Willsmore K, Wallwork H, McDonald G (2009) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 314(1–2):49–66

    Article  CAS  Google Scholar 

  • Gómez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19(2):165–180

    Article  PubMed  CAS  Google Scholar 

  • Hunt JR (2002) Moving toward a plant-based diet: are iron and zinc at risk? Nutr Res 60(5):127–134

    Google Scholar 

  • Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284(6):3470–3479

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorhem L, Engman J (2000) Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL1 collaborative study. J AOAC Int 83(5):1189–1203

    PubMed  CAS  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314(5803):1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150(1):257–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kordas K, Stoltzfus RJ (2004) New evidence of iron and zinc interplay at the enterocyte and neural tissues. J Nutr 134(6):1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Chen OS, Ward DM, Kaplan J (2001) CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276:29515–29519

    Article  PubMed  CAS  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11(2):166–170

    Article  PubMed  CAS  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Biol 64(1):369–381

    CAS  Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102:88–95

    Article  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthayya S, Rah JH, Sugimoto JD, Roos FF, Kraemer K, Black RE (2013) The global hidden hunger indices and maps: an advocacy tool for action. PLoS One 8(6):e67860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neelam K, Rawat N, Tiwari VK, Kumar S, Chhuneja P, Singh K, Randhawa GS, Dhaliwal HS (2011) Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Mol Breeding 28(4):623–634

    Article  CAS  Google Scholar 

  • Ortiz-Monasterio J, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena R (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46(3):293–307

    Article  CAS  Google Scholar 

  • Patel A, Mamtani M, Dibley MJ, Badhoniya N, Kulkarni H (2010) Therapeutic value of zinc supplementation in acute and persistent diarrhea: a systematic review. PLoS One 5(4):e10386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, Fahima T, Ozturk L, Cakmak I (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306(1–2):57–67

    Article  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) Biofortification: breeding micronutrient-dense crops. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Publishing, Iowa, pp 61–91.

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res 15(1):3–19

    Article  CAS  Google Scholar 

  • Rakhmatullina EM, Sanamyan MF (2007) Estimation of efficiency of seed irradiation by thermal neutrons for inducing chromosomal aberration in M2 of cotton Gossypium hirsutum L. Russ J Genet 43:518–524

  • Raupp W, Gill BS, Friebe B, Wilson D, Cox T, Sears R (1995) Proc 8th Int Wheat Genet Symp. In: The Wheat Genetics Resource Center: germ plasm conservation, evaluation and utilization. China Agricultural Scientech Press, Beijing, China, pp 469–475

    Google Scholar 

  • Rawat N, Neelam K, Tiwari VK, Randhawa GS, Friebe B, Gill BS, Dhaliwal HS (2011) Development and molecular characterization of wheat–Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 54(11):943–953

    Article  PubMed  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Ev 56(1):53–64

    Article  Google Scholar 

  • Rawat N, Neelam K, Tiwari VK, Dhaliwal HS (2013) Biofortification of cereals to overcome hidden hunger. Plant Breed 132:437–445.

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P, Sheikh I, Singh D, Kumar S, Verma SK, Kumar R, Vyas P, Dhaliwal HS (2017) Uptake, distribution, and remobilization of iron and zinc among various tissues of wheat-Aegilops substitution lines at different growth stages. Acta Physiol Plant 39:185

    Article  CAS  Google Scholar 

  • Sheikh I, Sharma P, Verma SK, Kumar S, Kumar R, Vyas P, Dhaliwal HS (2018) Development of intron targeted amplified polymorphic markers of metal homeostasis genes for monitoring their transfers from Aegilops species to wheat. Mol Breeding 38:47

  • Singh J, Sheikh I, Sharma P, Kumar S, Verma SK, Kumar R, Mathpal P, Kumar S, Vyas P, Dhaliwal HS (2016) Transfer of HMW glutenin subunits from Aegilops kotschyi to wheat through radiation hybridization. J Food Sci Technol 53(9):3543–3549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snape J, Parker B, Simpson E, Ainsworth C, Payne P, Law C (1983) The use of irradiated pollen for differential gene transfer in wheat (Triticum aestivum). Theor Appl Genet 65(2):103–111

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Tiong J, McDonald GK, Genc Y, Pedas P, Hayes JE, Toubia J, Langridge P, Huang CY (2014) HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol 201(1):131–143

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered 100(6):771–776

    Article  PubMed  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121(2):259–269

    Article  PubMed  CAS  Google Scholar 

  • Tiwari VK, Riera-Lizarazu O, Gunn HL, Lopez K, Iqbal MJ, Kianian SF, Leonard JM (2012) Endosperm tolerance of paternal aneuploidy allows radiation hybrid mapping of the wheat D-genome and a measure of γ ray-induced chromosome breaks. PLoS One 7(11):e48815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Sci 314:1298–1301

    Article  CAS  Google Scholar 

  • Verma SK, Kumar S, Sheikh I, Malik S, Mathpal P, Chugh V, Kumar S, Prasad R, Dhaliwal HS (2016a) Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. Int J Radiant Biol 92(3):132–139

    Article  CAS  Google Scholar 

  • Verma SK, Kumar S, Sheikh I, Sharma P, Mathpal P, Malik S, Kundu P, Awasthi A, Kumar S, Prasad R, Dhaliwal HS (2016b) Induced homoeologous pairing for transfer of useful variability for high grain Fe and Zn from Aegilops kotschyi into wheat. Plant Mol Biol Report 34(6):1083–1094

    Article  CAS  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chen P, Wang X (2010) Molecular cytogenetic analysis of Triticum aestivum-Leymus racemosus reciprocal chromosomal translocation T7DS5LrL/T5LrS7DL. Chin Sci Bull 55:1026–1031

    Article  CAS  Google Scholar 

  • Wei H, Dhanaraj AL, Rowland LJ, Fu Y, Krebs SL, Arora R (2005) Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta 221(3):406–416

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:80

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2012) UNFPA, The World Bank. Trends in maternal mortality: 1990 to 2010. World Health Organization, UNICEF, UNFPA

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology, Government of India for Grant (BT/AGR/Wheat Bioforti/PH-II/2010) through a network project “Biofortification of wheat for micronutrients through conventional and molecular approaches—phase-II”. The authors also acknowledge the Akal College of Agriculture for providing infrastructural facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harcharan Singh Dhaliwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 2.60 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Sheikh, I., Kumar, S. et al. Precise transfers of genes for high grain iron and zinc from wheat-Aegilops substitution lines into wheat through pollen irradiation. Mol Breeding 38, 81 (2018). https://doi.org/10.1007/s11032-018-0836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0836-8

Keywords

Navigation