Molecular Breeding

, 38:71 | Cite as

Proteomic and functional analysis of soybean chlorophyll-deficient mutant cd1 and the underlying gene encoding the CHLI subunit of Mg-chelatase

  • Hongyang Du
  • Mengzhe Qi
  • Xiaopei Cui
  • Yanmei Cui
  • Hui Yang
  • Jinyu Zhang
  • Yujie Ma
  • Shanshan Zhang
  • Xi Zhang
  • Deyue Yu


Sufficient chlorophyll biosynthesis is vital for the growth of photoautotrophic plants. Mg-chelatase, consisting of three subunits (CHLI, CHLD, and CHLH), catalyzes the insertion of Mg2+ into protoporphyrin IX, which is the rate-limiting step of chlorophyll biosynthesis. A chlorophyll-deficient mutant (cd1) was previously identified by phenotype. This mutant shows a chlorina phenotype, abnormal chloroplasts, and lower chlorophyll content, plant height, and seed yield than the WT (Nannong 86-4). In this study, map-based cloning of cd1 revealed that a missense mutation (G1709A) was present in GmCHLI1b, leading to an amino acid substitution (D278N) in the Arg-finger domain. Yeast two-hybrid assays indicated that this substitution weakened the interaction between Gmcd1 and GmCHLI1a/b. In addition, GmCHLI1b was not a target protein of GmTrxF1/2 or GmNTRC1/2 in the Y2H system but could interact with them in a bimolecular fluorescence complementation (BiFC) assay. A proteomic analysis of leaf soluble proteins identified 31 differentially accumulated proteins, mainly involved in photosynthesis, carbon fixation in photosynthetic organisms, and carbohydrate/energy and amino acid/protein metabolism. These results indicated that cd1 possesses weaker photosynthesis, respiration and protein metabolism and that its leaf redox homeostasis is disrupted. Global transcriptome analysis of chlorophyll biosynthesis and RT-PCR demonstrated a transcriptional downregulation of photosynthesis-associated genes in cd1 during the diurnal rhythm. This study provides insights into the mechanisms of molecular regulation in the cd1 mutant and adds to the knowledge of the biological and biochemical functions of GmCHLIs in soybean.


Soybean Map-based cloning Mg-chelatase GmCHLI1b Proteomes 2-DE Thioredoxin 


Funding information

This work was supported in part by the Ministry of Science and Technology (2016YFD0100304, 2017YFE0111000), Key Transgenic Breeding Program of China (2016ZX08004-003), National Natural Science Foundation of China (31701453,31671715), Fundamental Research Funds for the Central Universities (Y0201600116), and Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11032_2018_819_MOESM1_ESM.docx (5.6 mb)
ESM 1 (DOCX 5703kb)
11032_2018_819_MOESM2_ESM.xlsx (37 kb)
ESM 2 (XLSX 37kb)


  1. Albrecht V, Ingenfeld A, Apel K (2006) Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol 60:507–518CrossRefPubMedGoogle Scholar
  2. CampbellBW, ManiD, CurtinSJ, SlatteryRA, MichnoJM, OrtDR, SchausPJ, PalmerRG, OrfJH, StuparRM (2014) Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3 (Bethesda, Md) 5Google Scholar
  3. Chen X, Pu H, Fang Y, Wang X, Zhao S, Lin Y, Zhang M, Dai H-E, Gong W, Liu L (2015) Crystal structure of the catalytic subunit of magnesium chelatase. Nat Plants 1:15125CrossRefPubMedGoogle Scholar
  4. Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux A, Hill CP, Hunter CN (2005) Structural and biochemical characterization of Gun4 suggests a mechanism for its role in chlorophyll biosynthesis. Biochemistry 44:7603–7612CrossRefPubMedGoogle Scholar
  5. Du SY, Zhang XF, Lu Z, Xin Q, Wu Z, Jiang T, Lu Y, Wang XF, Zhang DP (2012) Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol Biol 80:519–537CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fodje MN, Hansson AM, Olsen JG, Gough S, Willows RD (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311:111–122CrossRefPubMedGoogle Scholar
  7. Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950CrossRefPubMedGoogle Scholar
  8. Hansson A, Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci U S A 96:1744–1749CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hansson A, Willows RD, Roberts TH, Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci U S A 99:13944–13949CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hortensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82:505–517CrossRefPubMedGoogle Scholar
  11. Huang YS, Li HM (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150:636–645CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PG, Hisabori T, Takamiya K, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291CrossRefPubMedGoogle Scholar
  13. Karata K, Inagawa T, Wilkinson AJ, Tatsuta T, Ogura T (1999) Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. J Biol Chem 274:26225–26232CrossRefPubMedGoogle Scholar
  14. Kato KK, Palmer RG (2004) Duplicate chlorophyll-deficient loci in soybean. Genome 47:190–198CrossRefPubMedGoogle Scholar
  15. Kobayashi K, Mochizuki N, Yoshimura N, Motohashi K, Hisabori T, Masuda T (2008) Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit. Photochem Photobiol Sci 7:1188–1195CrossRefPubMedGoogle Scholar
  16. Larkin RM, Alonso JM, Ecker JR, Chory J (2003) GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906CrossRefPubMedGoogle Scholar
  17. Li HM, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157–180CrossRefPubMedGoogle Scholar
  18. Li Q, Fang C, Duan Z, Liu Y, Qin H, Zhang J, Sun P, Li W, Wang G, Tian Z (2016) Functional conservation and divergence of GmCHLI genes in polyploid soybean. Plant J 88:584–596CrossRefPubMedGoogle Scholar
  19. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  20. Liu X, Yu W, Wang G, Cao F, Cai J, Wang H (2016) Comparative proteomic and physiological analysis reveals the variation mechanisms of leaf coloration and carbon fixation in a xantha mutant of Ginkgo biloba L. Int J Mol Sci 17Google Scholar
  21. Lundqvist J, Elmlund H, Wulff RP, Berglund L, Elmlund D, Emanuelsson C, Hebert H, Willows RD, Hansson M, Lindahl M, Al-Karadaghi S (2010) ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase. Structure 18:354–365CrossRefPubMedGoogle Scholar
  22. Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M (2012) Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159:118–130CrossRefPubMedPubMedCentralGoogle Scholar
  23. Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143CrossRefPubMedGoogle Scholar
  24. Palmer RG, Xu M (2008) Positioning 3 qualitative trait loci on soybean molecular linkage group E. J Hered 99:674–678CrossRefPubMedGoogle Scholar
  25. Perez-Ruiz JM, Guinea M, Puerto-Galan L, Cejudo FJ (2014) NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts. Mol Plant 7:1252–1255CrossRefPubMedGoogle Scholar
  26. Reed S, Atkinson T, Gorecki C, Espinosa K, Przybylski S, Goggi A, Palmer R, Sandhu D (2014) Candidate gene identification for a lethal chlorophyll-deficient mutant in soybean. Agronomy 4:462–469CrossRefGoogle Scholar
  27. Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S (2010) Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci 15:614–624CrossRefPubMedGoogle Scholar
  28. Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintamäki E, Grimm B (2013) Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol 162:63–73CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128:770–779CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sawers RJ, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP (2006) The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol Biol 60:95–106CrossRefPubMedGoogle Scholar
  31. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefPubMedGoogle Scholar
  32. Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109CrossRefPubMedGoogle Scholar
  33. Soldatova O, Apchelimov A, Radukina N, Ezhova T, Shestakov S, Ziemann V, Hedtke B, Grimm B (2005) An Arabidopsis mutant that is resistant to the protoporphyrinogen oxidase inhibitor acifluorfen shows regulatory changes in tetrapyrrole biosynthesis. Mol Gen Genomics 273:311–318CrossRefGoogle Scholar
  34. Song Q, Jia G, Zhu Y, Grant D, Nelson RT, Hwang E-Y, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50:1950–1960CrossRefGoogle Scholar
  35. Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128CrossRefPubMedGoogle Scholar
  36. Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248–255CrossRefPubMedGoogle Scholar
  37. Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346CrossRefPubMedGoogle Scholar
  38. Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A 107:8563–8568CrossRefPubMedPubMedCentralGoogle Scholar
  39. WaadtR, KudlaJ (2008) In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC) [J]. CSH Protocal, pdb prot4995Google Scholar
  40. Wang P, Grimm B (2015) Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. Photosynth Res 126:189–202CrossRefPubMedGoogle Scholar
  41. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata S, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci U S A 109:E2155–E2164CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xu M, Palmer RG (2005) Molecular mapping of k2Mdh1-ny20, an unstable chromosomal region in soybean [Glycine max (L.) Merr.]. Theor Appl Genet 111:1457–1465CrossRefPubMedGoogle Scholar
  43. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572CrossRefPubMedGoogle Scholar
  44. Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337CrossRefPubMedGoogle Scholar
  45. Zhang H, Liu L, Cai M, Zhu S, Zhao J, Zheng T, Xu X, Zeng Z, Niu J, Jiang L, Chen S, Wan J (2015) A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice. Plant Mol Biol Report 33:1975–1987CrossRefGoogle Scholar
  46. Zhang H, Zhang D, Han S, Zhang X, Yu D (2011) Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed 130:133–138CrossRefGoogle Scholar
  47. Zheng R, Yue S, Xu X, Liu J, Xu Q, Wang X, Han L, Yu D (2012) Proteome analysis of the wild and YX-1 male sterile mutant anthers of wolfberry (Lycium barbarum L.). PLoS One 7:e41861CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zou JJ (2003) Association of the yellow leaf (y10) mutant to soybean chromosome 3. J Hered 94:352–355CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Hongyang Du
    • 1
    • 2
  • Mengzhe Qi
    • 1
  • Xiaopei Cui
    • 1
  • Yanmei Cui
    • 1
  • Hui Yang
    • 1
  • Jinyu Zhang
    • 3
  • Yujie Ma
    • 1
  • Shanshan Zhang
    • 1
  • Xi Zhang
    • 1
  • Deyue Yu
    • 1
    • 4
  1. 1.National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
  2. 2.Provincial Key Laboratory of Agrobiology, Institute of BiotechnologyJiangsu Academy of Agricultural SciencesNanjingChina
  3. 3.Henan Collaborative Innovation Center of Modern Biological BreedingHenan Institute of Science and TechnologyXinxiangChina
  4. 4.School of Life SciencesGuangzhou UniversityGuangzhouChina

Personalised recommendations