Molecular Breeding

, 38:47 | Cite as

Development of intron targeted amplified polymorphic markers of metal homeostasis genes for monitoring their introgression from Aegilops species to wheat

  • Imran Sheikh
  • Prachi Sharma
  • Shailender Kumar Verma
  • Satish Kumar
  • Naveen Kumar
  • Sundip Kumar
  • Rahul Kumar
  • Pritesh Vyas
  • Harcharan Singh Dhaliwal
Article
  • 86 Downloads

Abstract

The identification of transfers of useful alien genes for metal homeostasis from non-progenitor Aegilops species using the widely available anchored wheat SSR markers is difficult due to their lower polymorphism with the distant related wild species and the lack of locus specificity further restricts their application. The present study deals with the development of intron targeted amplified polymorphic (ITAP) markers for the metal homeostasis genes present on chromosomes of groups 2 and 7 of Triticeae. The mRNA sequences of 27 metal homeostasis genes were retrieved from different plant species using NCBI database and their BLASTn was performed against the wheat draft genome sequences in Ensemblplants to get exonic and intronic sequences of the corresponding metal homeostasis genes in wheat. The ITAP primers were developed in such a way that they would anneal to the conserved flanking exonic regions of the genes and amplify across highly variable introns within the PCR limits. The primers led to the amplification of variable intronic sequences of genes with polymorphism between non-progenitor Aegilops species and the recipient wheat cultivars. Further, the polymorphic ITAP markers were used to characterize the transfers of metal homeostasis genes from the non-progenitor Aegilops species to the BC2F5 wheat-Aegilops derivatives, developed through induced homoeologous pairing. The derivatives with significant percent increase in grain Fe and Zn content over the elite cultivar PBW343 LrP showed the introgression of some of the useful Aegilops alleles of the metal homeostasis genes. The use of different metal homeostasis genes using this approach is the first report of the direct contribution of the genes for increasing the grain micronutrient content for developing biofortified wheat lines with reduced linkage drag.

Keywords

Aegilops ITAP Metal homeostasis genes Induced homoeologous pairing Biofortification iron and zinc Mono 5B 

Notes

Acknowledgements

The authors acknowledge the Department of Biotechnology, Government of India for Grant (BT/AGR/Wheat Bioforti/PH-II/2010) through a network project “Biofortification of wheat for micronutrients through conventional and molecular approaches—phase-II”. The authors also acknowledge the Akal College of Agriculture for providing infrastructural facilities to carry out this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2018_809_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1374 kb)

References

  1. Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph I-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127(3):377–382CrossRefGoogle Scholar
  2. Baum M, Lagudah ES, Appels R (1992) Wide crosses in cereals. Ann Rev Plant Biol 43(1):117–143CrossRefGoogle Scholar
  3. Borrill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breed 125(5):529–531CrossRefGoogle Scholar
  6. Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166(3):1463–1502CrossRefPubMedPubMedCentralGoogle Scholar
  7. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11CrossRefPubMedGoogle Scholar
  8. Friebe B, Jiang J, Raupp W, McIntosh R, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91(1):59–87CrossRefGoogle Scholar
  9. Friebe B, Qi L, Nasuda S, Zhang P, Tuleen N, Gill BS (2000) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101(1):51–58CrossRefGoogle Scholar
  10. Han Z, Wang C, Song X, Guo W, Gou J, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112(3):430–439CrossRefPubMedGoogle Scholar
  11. Hawkin JD (1988) A survey on intron and exon lengths. Nucleic Acids Res 16(21):9893–9908CrossRefGoogle Scholar
  12. Hunt JR (2002) Moving toward a plant-based diet: are iron and zinc at risk? Nutr Rev 60(5):127–134CrossRefPubMedGoogle Scholar
  13. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496(7443):91–95CrossRefPubMedGoogle Scholar
  14. Jorhem L, Engman J (2000) Determination of lead, cadmium, zinc, copper, and iron in foods by atomic absorption spectrometry after microwave digestion: NMKL1 collaborative study. J AOAC Int 83(5):1189–1203PubMedGoogle Scholar
  15. Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581(12):2273–2280CrossRefPubMedGoogle Scholar
  16. Kimura M (1983) Rare variant alleles in the light of the neutral theory. Mol Biol Evol 1(1):84–93PubMedGoogle Scholar
  17. Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150(1):257–271CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lacadena JR (1967) Introduction of allien variation into wheat by gene recombination. I. Crosses between mono V (5B) Triticum aestivum L. and Secale cereale L. and Aegilops columnaris zhuk. Euphytica 16(2):221–230CrossRefGoogle Scholar
  19. Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496(7443):87–90CrossRefPubMedGoogle Scholar
  20. Lukaszewski AJ (1997) Further manipulation by centric misdivision of the 1RS. 1BL translocation in wheat. Euphytica 94(3):257–261CrossRefGoogle Scholar
  21. Lukaszewski A, Lapinski B, Rybka K (2005) Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res 109(1–3):373–377CrossRefPubMedGoogle Scholar
  22. Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG (2005) EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48(5):811–822CrossRefPubMedGoogle Scholar
  23. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326CrossRefPubMedPubMedCentralGoogle Scholar
  24. Neelam K, Rawat N, Tiwari VK, Kumar S, Chhuneja P, Singh K, Randhawa GS, Dhaliwal HS (2011) Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Mol Breed 28(4):623–634CrossRefGoogle Scholar
  25. Okamoto M (1957) Asynaptic effect of chromosome V. Wheat Inf Serv 5:6Google Scholar
  26. Pearce S, Tabbita F, Cantu D, Buffalo V, Avni R, Vazquez-Gross H, Zhao R, Conley CJ, Distelfeld A, Dubcovksy J (2014) Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. BMC Plant Biol 14(1):368CrossRefPubMedPubMedCentralGoogle Scholar
  27. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(1):6CrossRefPubMedPubMedCentralGoogle Scholar
  28. Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res 15(1):3–19CrossRefGoogle Scholar
  29. Rawat N, Neelam K, Tiwari VK, Randhawa GS, Friebe B, Gill BS, Dhaliwal HS (2011) Development and molecular characterization of wheat–Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome 54(11):943–953CrossRefPubMedGoogle Scholar
  30. Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49(3):91–98CrossRefGoogle Scholar
  31. Riley R, Chapman V, Kimber G (1959) Genetic control of chromosome pairing in intergeneric hybrids with wheat. Nature 183(4670):1244–1246CrossRefPubMedGoogle Scholar
  32. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  33. Sears E (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol 9:1–21Google Scholar
  34. Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19(4):585–593CrossRefGoogle Scholar
  35. Sharma P, Sheikh I, Singh D, Kumar S, Verma SK, Kumar R, Vyas P, Dhaliwal HS (2017) Uptake, distribution, and remobilization of iron and zinc among various tissues of wheat–Aegilops substitution lines at different growth stages. Acta Physiol Plant 39(8):185CrossRefGoogle Scholar
  36. Sheikh I, Sharma P, Verma SK, Kumar S, Malik S, Mathpal P, Kumar U, Singh D, Kumar S, Chugh V, Dhaliwal HS (2016) Characterization of interspecific hybrids of Triticum aestivum x Aegilops sp. without 5B chromosome for induced homoeologous pairing. J Plant Biochem Biotechnol 25(1):117–120CrossRefGoogle Scholar
  37. Tiong J, McDonald GK, Genc Y, Pedas P, Hayes JE, Toubia J, Langridge P, Huang CY (2014) HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. New Phytol 201(1):131–143CrossRefPubMedGoogle Scholar
  38. Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. J Hered 100:771–776CrossRefPubMedGoogle Scholar
  39. Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121(2):259–269CrossRefPubMedGoogle Scholar
  40. Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15(1):273CrossRefPubMedPubMedCentralGoogle Scholar
  41. Verma SK, Kumar S, Sheikh I, Malik S, Mathpal P, Chugh V, Kumar S, Prasad R, Dhaliwal HS (2016a) Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. Int J Radiat Biol 92(3):132–139CrossRefPubMedGoogle Scholar
  42. Verma SK, Kumar S, Sheikh I, Sharma P, Mathpal P, Malik S, Kundu P, Awasthi A, Kumar S, Prasad R, Dhaliwal HS (2016b) Induced homoeologous pairing for transfer of useful variability for high grain Fe and Zn from Aegilops kotschyi into wheat. Plant Mol Biol Report 34(6):1083–1094CrossRefGoogle Scholar
  43. Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sci 180(4):562–574CrossRefPubMedGoogle Scholar
  44. Wei H, Fu Y, Arora R (2005) Intron-flanking EST–PCR markers: from genetic marker development to gene structure analysis in Rhododendron. Theor Appl Genet 111(7):1347–1356CrossRefPubMedGoogle Scholar
  45. Weining S, Langridge P (1991) Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet 82(2):209–216CrossRefPubMedGoogle Scholar
  46. Xiong F, Liu J, Zhong R, Jiang J, Han Z, He L, Li Z, Tang X, Tang R (2013) Intron targeted amplified polymorphism (ITAP), a new sequence related amplified polymorphism-based technique for generating molecular markers in higher plant species. Plant Omics J 6(2):128Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Imran Sheikh
    • 1
  • Prachi Sharma
    • 1
  • Shailender Kumar Verma
    • 2
  • Satish Kumar
    • 3
  • Naveen Kumar
    • 4
  • Sundip Kumar
    • 4
  • Rahul Kumar
    • 1
  • Pritesh Vyas
    • 1
  • Harcharan Singh Dhaliwal
    • 1
  1. 1.Department of Biotechnology, Akal College of AgricultureEternal UniversityBaru SahibIndia
  2. 2.School of Life SciencesCentral University of Himachal PradeshKangraIndia
  3. 3.Centre for BiotechnologyMaharshi Dayanand UniversityRohtakIndia
  4. 4.Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and HumanitiesG. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations